-
Notifications
You must be signed in to change notification settings - Fork 722
/
Copy pathproperties.py
1269 lines (1011 loc) · 50.3 KB
/
properties.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Copyright 2017-2022 John Snow Labs
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Contains classes for Annotator properties."""
from typing import List, Dict
from pyspark.ml.param import Param, Params, TypeConverters
class HasBatchedAnnotate:
batchSize = Param(Params._dummy(), "batchSize", "Size of every batch", TypeConverters.toInt)
def setBatchSize(self, v):
"""Sets batch size.
Parameters
----------
v : int
Batch size
"""
return self._set(batchSize=v)
def getBatchSize(self):
"""Gets current batch size.
Returns
-------
int
Current batch size
"""
return self.getOrDefault("batchSize")
class HasCaseSensitiveProperties:
caseSensitive = Param(Params._dummy(),
"caseSensitive",
"whether to ignore case in tokens for embeddings matching",
typeConverter=TypeConverters.toBoolean)
def setCaseSensitive(self, value):
"""Sets whether to ignore case in tokens for embeddings matching.
Parameters
----------
value : bool
Whether to ignore case in tokens for embeddings matching
"""
return self._set(caseSensitive=value)
def getCaseSensitive(self):
"""Gets whether to ignore case in tokens for embeddings matching.
Returns
-------
bool
Whether to ignore case in tokens for embeddings matching
"""
return self.getOrDefault(self.caseSensitive)
class HasClsTokenProperties:
useCLSToken = Param(Params._dummy(),
"useCLSToken",
"Whether to use CLS token for pooling (true) or attention-based average pooling (false)",
typeConverter=TypeConverters.toBoolean)
def setUseCLSToken(self, value):
"""Sets whether to ignore case in tokens for embeddings matching.
Parameters
----------
value : bool
Whether to use CLS token for pooling (true) or attention-based average pooling (false)
"""
return self._set(useCLSToken=value)
def getUseCLSToken(self):
"""Gets whether to use CLS token for pooling (true) or attention-based average pooling (false)
Returns
-------
bool
Whether to use CLS token for pooling (true) or attention-based average pooling (false)
"""
return self.getOrDefault(self.useCLSToken)
class HasClassifierActivationProperties:
activation = Param(Params._dummy(),
"activation",
"Whether to calculate logits via Softmax or Sigmoid. Default is Softmax",
typeConverter=TypeConverters.toString)
multilabel = Param(Params._dummy(),
"multilabel",
"Whether to calculate logits via Multiclass(softmax) or Multilabel(sigmoid). Default is False i.e. Multiclass",
typeConverter=TypeConverters.toBoolean)
threshold = Param(Params._dummy(),
"threshold",
"Choose the threshold to determine which logits are considered to be positive or negative",
typeConverter=TypeConverters.toFloat)
def setActivation(self, value):
"""Sets whether to calculate logits via Softmax or Sigmoid. Default is Softmax
Parameters
----------
value : str
Whether to calculate logits via Softmax or Sigmoid. Default is Softmax
"""
return self._set(activation=value)
def getActivation(self):
"""Gets whether to calculate logits via Softmax or Sigmoid. Default is Softmax
Returns
-------
str
Whether to calculate logits via Softmax or Sigmoid. Default is Softmax
"""
return self.getOrDefault(self.activation)
def setMultilabel(self, value):
"""Set whether or not the result should be multi-class (the sum of all probabilities is 1.0) or
multi-label (each label has a probability between 0.0 to 1.0).
Default is False i.e. multi-class
Parameters
----------
value : bool
Whether or not the result should be multi-class (the sum of all probabilities is 1.0) or
multi-label (each label has a probability between 0.0 to 1.0).
Default is False i.e. multi-class
"""
return self._set(multilabel=value)
def getMultilabel(self):
"""Gets whether or not the result should be multi-class (the sum of all probabilities is 1.0) or
multi-label (each label has a probability between 0.0 to 1.0).
Default is False i.e. multi-class
Parameters
----------
value : bool
Whether or not the result should be multi-class (the sum of all probabilities is 1.0) or
multi-label (each label has a probability between 0.0 to 1.0).
Default is False i.e. multi-class
"""
return self.getOrDefault(self.multilabel)
def setThreshold(self, value):
"""Set the threshold to determine which logits are considered to be positive or negative.
(Default: `0.5`). The value should be between 0.0 and 1.0. Changing the threshold value
will affect the resulting labels and can be used to adjust the balance between precision and
recall in the classification process.
Parameters
----------
value : float
The threshold to determine which logits are considered to be positive or negative.
(Default: `0.5`). The value should be between 0.0 and 1.0. Changing the threshold value
will affect the resulting labels and can be used to adjust the balance between precision and
recall in the classification process.
"""
return self._set(threshold=value)
class HasEmbeddingsProperties(Params):
dimension = Param(Params._dummy(),
"dimension",
"Number of embedding dimensions",
typeConverter=TypeConverters.toInt)
def setDimension(self, value):
"""Sets embeddings dimension.
Parameters
----------
value : int
Embeddings dimension
"""
return self._set(dimension=value)
def getDimension(self):
"""Gets embeddings dimension."""
return self.getOrDefault(self.dimension)
class HasEnableCachingProperties:
enableCaching = Param(Params._dummy(),
"enableCaching",
"Whether to enable caching DataFrames or RDDs during the training",
typeConverter=TypeConverters.toBoolean)
def setEnableCaching(self, value):
"""Sets whether to enable caching DataFrames or RDDs during the training
Parameters
----------
value : bool
Whether to enable caching DataFrames or RDDs during the training
"""
return self._set(enableCaching=value)
def getEnableCaching(self):
"""Gets whether to enable caching DataFrames or RDDs during the training
Returns
-------
bool
Whether to enable caching DataFrames or RDDs during the training
"""
return self.getOrDefault(self.enableCaching)
class HasBatchedAnnotateImage:
batchSize = Param(Params._dummy(), "batchSize", "Size of every batch", TypeConverters.toInt)
def setBatchSize(self, v):
"""Sets batch size.
Parameters
----------
v : int
Batch size
"""
return self._set(batchSize=v)
def getBatchSize(self):
"""Gets current batch size.
Returns
-------
int
Current batch size
"""
return self.getOrDefault("batchSize")
class HasImageFeatureProperties:
doResize = Param(Params._dummy(), "doResize", "Whether to resize the input to a certain size",
TypeConverters.toBoolean)
doNormalize = Param(Params._dummy(), "doNormalize",
"Whether to normalize the input with mean and standard deviation",
TypeConverters.toBoolean)
featureExtractorType = Param(Params._dummy(), "featureExtractorType",
"Name of model's architecture for feature extraction",
TypeConverters.toString)
imageMean = Param(Params._dummy(), "imageMean",
"The sequence of means for each channel, to be used when normalizing images",
TypeConverters.toListFloat)
imageStd = Param(Params._dummy(), "imageStd",
"The sequence of standard deviations for each channel, to be used when normalizing images",
TypeConverters.toListFloat)
resample = Param(Params._dummy(), "resample",
"An optional resampling filter. This can be one of PIL.Image.NEAREST, PIL.Image.BILINEAR or "
"PIL.Image.BICUBIC. Only has an effect if do_resize is set to True.",
TypeConverters.toInt)
size = Param(Params._dummy(), "size",
"Resize the input to the given size. If a tuple is provided, it should be (width, height). If only "
"an integer is provided, then the input will be resized to (size, size). Only has an effect if "
"do_resize is set to True.",
TypeConverters.toInt)
def setDoResize(self, value):
"""
Parameters
----------
value : Boolean
Whether to resize the input to a certain size
"""
return self._set(doResize=value)
def setDoNormalize(self, value):
"""
Parameters
----------
value : Boolean
Whether to normalize the input with mean and standard deviation
"""
return self._set(doNormalize=value)
def setFeatureExtractorType(self, value):
"""
Parameters
----------
value : str
Name of model's architecture for feature extraction
"""
return self._set(featureExtractorType=value)
def setImageStd(self, value):
"""
Parameters
----------
value : List[float]
The sequence of standard deviations for each channel, to be used when normalizing images
"""
return self._set(imageStd=value)
def setImageMean(self, value):
"""
Parameters
----------
value : List[float]
The sequence of means for each channel, to be used when normalizing images
"""
return self._set(imageMean=value)
def setResample(self, value):
"""
Parameters
----------
value : int
Resampling filter for resizing. This can be one of `PIL.Image.NEAREST`, `PIL.Image.BILINEAR` or
`PIL.Image.BICUBIC`. Only has an effect if `do_resize` is set to `True`.
"""
return self._set(resample=value)
def setSize(self, value):
"""
Parameters
----------
value : int
Resize the input to the given size. If a tuple is provided, it should be (width, height).
"""
return self._set(size=value)
class HasRescaleFactor:
doRescale = Param(Params._dummy(), "doRescale",
"Whether to rescale the image values by rescaleFactor.",
TypeConverters.toBoolean)
rescaleFactor = Param(Params._dummy(), "rescaleFactor",
"Factor to scale the image values",
TypeConverters.toFloat)
def setDoRescale(self, value):
"""Sets Whether to rescale the image values by rescaleFactor, by default `True`.
Parameters
----------
value : Boolean
Whether to rescale the image values by rescaleFactor.
"""
return self._set(doRescale=value)
def setRescaleFactor(self, value):
"""Sets Factor to scale the image values, by default `1/255.0`.
Parameters
----------
value : Boolean
Whether to rescale the image values by rescaleFactor.
"""
return self._set(rescaleFactor=value)
class HasBatchedAnnotateAudio:
batchSize = Param(Params._dummy(), "batchSize", "Size of every batch", TypeConverters.toInt)
def setBatchSize(self, v):
"""Sets batch size.
Parameters
----------
v : int
Batch size
"""
return self._set(batchSize=v)
def getBatchSize(self):
"""Gets current batch size.
Returns
-------
int
Current batch size
"""
return self.getOrDefault("batchSize")
class HasAudioFeatureProperties:
doNormalize = Param(Params._dummy(), "doNormalize",
"Whether to normalize the input",
TypeConverters.toBoolean)
returnAttentionMask = Param(Params._dummy(), "returnAttentionMask", "",
TypeConverters.toBoolean)
paddingSide = Param(Params._dummy(), "paddingSide",
"",
TypeConverters.toString)
featureSize = Param(Params._dummy(), "featureSize",
"",
TypeConverters.toInt)
samplingRate = Param(Params._dummy(), "samplingRate",
"",
TypeConverters.toInt)
paddingValue = Param(Params._dummy(), "paddingValue",
"",
TypeConverters.toFloat)
def setDoNormalize(self, value):
"""
Parameters
----------
value : Boolean
Whether to normalize the input with mean and standard deviation
"""
return self._set(doNormalize=value)
def setReturnAttentionMask(self, value):
"""
Parameters
----------
value : boolean
"""
return self._set(returnAttentionMask=value)
def setPaddingSide(self, value):
"""
Parameters
----------
value : str
"""
return self._set(paddingSide=value)
def setFeatureSize(self, value):
"""
Parameters
----------
value : int
"""
return self._set(featureSize=value)
def setSamplingRate(self, value):
"""
Parameters
----------
value : Int
"""
return self._set(samplingRate=value)
def setPaddingValue(self, value):
"""
Parameters
----------
value : float
"""
return self._set(paddingValue=value)
class HasEngine:
engine = Param(Params._dummy(), "engine",
"Deep Learning engine used for this model",
typeConverter=TypeConverters.toString)
def getEngine(self):
"""
Returns
-------
str
Deep Learning engine used for this model"
"""
return self.getOrDefault(self.engine)
class HasCandidateLabelsProperties:
candidateLabels = Param(Params._dummy(), "candidateLabels",
"Deep Learning engine used for this model",
typeConverter=TypeConverters.toListString)
contradictionIdParam = Param(Params._dummy(), "contradictionIdParam",
"contradictionIdParam",
typeConverter=TypeConverters.toInt)
entailmentIdParam = Param(Params._dummy(), "entailmentIdParam",
"contradictionIdParam",
typeConverter=TypeConverters.toInt)
def setCandidateLabels(self, v):
"""Sets candidateLabels.
Parameters
----------
v : list[string]
candidateLabels
"""
return self._set(candidateLabels=v)
def setContradictionIdParam(self, v):
"""Sets contradictionIdParam.
Parameters
----------
v : int
contradictionIdParam
"""
return self._set(contradictionIdParam=v)
def setEntailmentIdParam(self, v):
"""Sets entailmentIdParam.
Parameters
----------
v : int
entailmentIdParam
"""
return self._set(entailmentIdParam=v)
class HasMaxSentenceLengthLimit:
# Default Value, can be overridden
max_length_limit = 512
maxSentenceLength = Param(Params._dummy(),
"maxSentenceLength",
"Max sentence length to process",
typeConverter=TypeConverters.toInt)
def setMaxSentenceLength(self, value):
"""Sets max sentence length to process.
Note that a maximum limit exists depending on the model. If you are working with long single
sequences, consider splitting up the input first with another annotator e.g. SentenceDetector.
Parameters
----------
value : int
Max sentence length to process
"""
if value > self.max_length_limit:
raise ValueError(
f"{self.__class__.__name__} models do not support token sequences longer than {self.max_length_limit}.\n"
f"Consider splitting up the input first with another annotator e.g. SentenceDetector.")
return self._set(maxSentenceLength=value)
def getMaxSentenceLength(self):
"""Gets max sentence of the model.
Returns
-------
int
Max sentence length to process
"""
return self.getOrDefault("maxSentenceLength")
class HasLongMaxSentenceLengthLimit(HasMaxSentenceLengthLimit):
max_length_limit = 4096
class HasGeneratorProperties:
task = Param(Params._dummy(), "task", "Transformer's task, e.g. summarize>", typeConverter=TypeConverters.toString)
minOutputLength = Param(Params._dummy(), "minOutputLength", "Minimum length of the sequence to be generated",
typeConverter=TypeConverters.toInt)
maxOutputLength = Param(Params._dummy(), "maxOutputLength", "Maximum length of output text",
typeConverter=TypeConverters.toInt)
doSample = Param(Params._dummy(), "doSample", "Whether or not to use sampling; use greedy decoding otherwise",
typeConverter=TypeConverters.toBoolean)
temperature = Param(Params._dummy(), "temperature", "The value used to module the next token probabilities",
typeConverter=TypeConverters.toFloat)
topK = Param(Params._dummy(), "topK",
"The number of highest probability vocabulary tokens to keep for top-k-filtering",
typeConverter=TypeConverters.toInt)
topP = Param(Params._dummy(), "topP",
"If set to float < 1, only the most probable tokens with probabilities that add up to ``top_p`` or higher are kept for generation",
typeConverter=TypeConverters.toFloat)
repetitionPenalty = Param(Params._dummy(), "repetitionPenalty",
"The parameter for repetition penalty. 1.0 means no penalty. See `this paper <https://arxiv.org/pdf/1909.05858.pdf>`__ for more details",
typeConverter=TypeConverters.toFloat)
noRepeatNgramSize = Param(Params._dummy(), "noRepeatNgramSize",
"If set to int > 0, all ngrams of that size can only occur once",
typeConverter=TypeConverters.toInt)
beamSize = Param(Params._dummy(), "beamSize",
"The Number of beams for beam search.",
typeConverter=TypeConverters.toInt)
nReturnSequences = Param(Params._dummy(),
"nReturnSequences",
"The number of sequences to return from the beam search.",
typeConverter=TypeConverters.toInt)
def setTask(self, value):
"""Sets the transformer's task, e.g. ``summarize:``.
Parameters
----------
value : str
The transformer's task
"""
return self._set(task=value)
def setMinOutputLength(self, value):
"""Sets minimum length of the sequence to be generated.
Parameters
----------
value : int
Minimum length of the sequence to be generated
"""
return self._set(minOutputLength=value)
def setMaxOutputLength(self, value):
"""Sets maximum length of output text.
Parameters
----------
value : int
Maximum length of output text
"""
return self._set(maxOutputLength=value)
def setDoSample(self, value):
"""Sets whether or not to use sampling, use greedy decoding otherwise.
Parameters
----------
value : bool
Whether or not to use sampling; use greedy decoding otherwise
"""
return self._set(doSample=value)
def setTemperature(self, value):
"""Sets the value used to module the next token probabilities.
Parameters
----------
value : float
The value used to module the next token probabilities
"""
return self._set(temperature=value)
def setTopK(self, value):
"""Sets the number of highest probability vocabulary tokens to keep for
top-k-filtering.
Parameters
----------
value : int
Number of highest probability vocabulary tokens to keep
"""
return self._set(topK=value)
def setTopP(self, value):
"""Sets the top cumulative probability for vocabulary tokens.
If set to float < 1, only the most probable tokens with probabilities
that add up to ``topP`` or higher are kept for generation.
Parameters
----------
value : float
Cumulative probability for vocabulary tokens
"""
return self._set(topP=value)
def setRepetitionPenalty(self, value):
"""Sets the parameter for repetition penalty. 1.0 means no penalty.
Parameters
----------
value : float
The repetition penalty
References
----------
See `Ctrl: A Conditional Transformer Language Model For Controllable
Generation <https://arxiv.org/pdf/1909.05858.pdf>`__ for more details.
"""
return self._set(repetitionPenalty=value)
def setNoRepeatNgramSize(self, value):
"""Sets size of n-grams that can only occur once.
If set to int > 0, all ngrams of that size can only occur once.
Parameters
----------
value : int
N-gram size can only occur once
"""
return self._set(noRepeatNgramSize=value)
def setBeamSize(self, value):
"""Sets the number of beam size for beam search.
Parameters
----------
value : int
Number of beam size for beam search
"""
return self._set(beamSize=value)
def setNReturnSequences(self, value):
"""Sets the number of sequences to return from the beam search.
Parameters
----------
value : int
Number of sequences to return
"""
return self._set(nReturnSequences=value)
class HasLlamaCppProperties:
# -------- MODEl PARAMETERS --------
nThreads = Param(Params._dummy(), "nThreads", "Set the number of threads to use during generation",
typeConverter=TypeConverters.toInt)
nThreadsDraft = Param(Params._dummy(), "nThreadsDraft", "Set the number of threads to use during draft generation",
typeConverter=TypeConverters.toInt)
nThreadsBatch = Param(Params._dummy(), "nThreadsBatch",
"Set the number of threads to use during batch and prompt processing",
typeConverter=TypeConverters.toInt)
nThreadsBatchDraft = Param(Params._dummy(), "nThreadsBatchDraft",
"Set the number of threads to use during batch and prompt processing",
typeConverter=TypeConverters.toInt)
nCtx = Param(Params._dummy(), "nCtx", "Set the size of the prompt context", typeConverter=TypeConverters.toInt)
nBatch = Param(Params._dummy(), "nBatch",
"Set the logical batch size for prompt processing (must be >=32 to use BLAS)",
typeConverter=TypeConverters.toInt)
nUbatch = Param(Params._dummy(), "nUbatch",
"Set the physical batch size for prompt processing (must be >=32 to use BLAS)",
typeConverter=TypeConverters.toInt)
nDraft = Param(Params._dummy(), "nDraft", "Set the number of tokens to draft for speculative decoding",
typeConverter=TypeConverters.toInt)
nChunks = Param(Params._dummy(), "nChunks", "Set the maximal number of chunks to process",
typeConverter=TypeConverters.toInt)
nSequences = Param(Params._dummy(), "nSequences", "Set the number of sequences to decode",
typeConverter=TypeConverters.toInt)
pSplit = Param(Params._dummy(), "pSplit", "Set the speculative decoding split probability",
typeConverter=TypeConverters.toFloat)
nGpuLayers = Param(Params._dummy(), "nGpuLayers", "Set the number of layers to store in VRAM (-1 - use default)",
typeConverter=TypeConverters.toInt)
nGpuLayersDraft = Param(Params._dummy(), "nGpuLayersDraft",
"Set the number of layers to store in VRAM for the draft model (-1 - use default)",
typeConverter=TypeConverters.toInt)
# Set how to split the model across GPUs
#
# - NONE: No GPU split
# - LAYER: Split the model across GPUs by layer
# - ROW: Split the model across GPUs by rows
gpuSplitMode = Param(Params._dummy(), "gpuSplitMode", "Set how to split the model across GPUs",
typeConverter=TypeConverters.toString)
mainGpu = Param(Params._dummy(), "mainGpu", "Set the main GPU that is used for scratch and small tensors.",
typeConverter=TypeConverters.toInt)
tensorSplit = Param(Params._dummy(), "tensorSplit", "Set how split tensors should be distributed across GPUs",
typeConverter=TypeConverters.toListFloat)
grpAttnN = Param(Params._dummy(), "grpAttnN", "Set the group-attention factor", typeConverter=TypeConverters.toInt)
grpAttnW = Param(Params._dummy(), "grpAttnW", "Set the group-attention width", typeConverter=TypeConverters.toInt)
ropeFreqBase = Param(Params._dummy(), "ropeFreqBase", "Set the RoPE base frequency, used by NTK-aware scaling",
typeConverter=TypeConverters.toFloat)
ropeFreqScale = Param(Params._dummy(), "ropeFreqScale",
"Set the RoPE frequency scaling factor, expands context by a factor of 1/N",
typeConverter=TypeConverters.toFloat)
yarnExtFactor = Param(Params._dummy(), "yarnExtFactor", "Set the YaRN extrapolation mix factor",
typeConverter=TypeConverters.toFloat)
yarnAttnFactor = Param(Params._dummy(), "yarnAttnFactor", "Set the YaRN scale sqrt(t) or attention magnitude",
typeConverter=TypeConverters.toFloat)
yarnBetaFast = Param(Params._dummy(), "yarnBetaFast", "Set the YaRN low correction dim or beta",
typeConverter=TypeConverters.toFloat)
yarnBetaSlow = Param(Params._dummy(), "yarnBetaSlow", "Set the YaRN high correction dim or alpha",
typeConverter=TypeConverters.toFloat)
yarnOrigCtx = Param(Params._dummy(), "yarnOrigCtx", "Set the YaRN original context size of model",
typeConverter=TypeConverters.toInt)
defragmentationThreshold = Param(Params._dummy(), "defragmentationThreshold",
"Set the KV cache defragmentation threshold", typeConverter=TypeConverters.toFloat)
# Set optimization strategies that help on some NUMA systems (if available)
#
# Available Strategies:
#
# - DISABLED: No NUMA optimizations
# - DISTRIBUTE: Spread execution evenly over all
# - ISOLATE: Only spawn threads on CPUs on the node that execution started on
# - NUMA_CTL: Use the CPU map provided by numactl
# - MIRROR: Mirrors the model across NUMA nodes
numaStrategy = Param(Params._dummy(), "numaStrategy",
"Set optimization strategies that help on some NUMA systems (if available)",
typeConverter=TypeConverters.toString)
# Set the RoPE frequency scaling method, defaults to linear unless specified by the model.
#
# - UNSPECIFIED: Don't use any scaling
# - LINEAR: Linear scaling
# - YARN: YaRN RoPE scaling
ropeScalingType = Param(Params._dummy(), "ropeScalingType",
"Set the RoPE frequency scaling method, defaults to linear unless specified by the model",
typeConverter=TypeConverters.toString)
# Set the pooling type for embeddings, use model default if unspecified
#
# - 0 NONE: Don't use any pooling
# - 1 MEAN: Mean Pooling
# - 2 CLS: CLS Pooling
poolingType = Param(Params._dummy(), "poolingType",
"Set the pooling type for embeddings, use model default if unspecified",
typeConverter=TypeConverters.toString)
modelDraft = Param(Params._dummy(), "modelDraft", "Set the draft model for speculative decoding",
typeConverter=TypeConverters.toString)
modelAlias = Param(Params._dummy(), "modelAlias", "Set a model alias", typeConverter=TypeConverters.toString)
lookupCacheStaticFilePath = Param(Params._dummy(), "lookupCacheStaticFilePath",
"Set path to static lookup cache to use for lookup decoding (not updated by generation)",
typeConverter=TypeConverters.toString)
lookupCacheDynamicFilePath = Param(Params._dummy(), "lookupCacheDynamicFilePath",
"Set path to dynamic lookup cache to use for lookup decoding (updated by generation)",
typeConverter=TypeConverters.toString)
# loraAdapters = new StructFeature[Map[String, Float]](this, "loraAdapters")
embedding = Param(Params._dummy(), "embedding", "Whether to load model with embedding support",
typeConverter=TypeConverters.toBoolean)
flashAttention = Param(Params._dummy(), "flashAttention", "Whether to enable Flash Attention",
typeConverter=TypeConverters.toBoolean)
inputPrefixBos = Param(Params._dummy(), "inputPrefixBos",
"Whether to add prefix BOS to user inputs, preceding the `--in-prefix` string",
typeConverter=TypeConverters.toBoolean)
useMmap = Param(Params._dummy(), "useMmap",
"Whether to use memory-map model (faster load but may increase pageouts if not using mlock)",
typeConverter=TypeConverters.toBoolean)
useMlock = Param(Params._dummy(), "useMlock",
"Whether to force the system to keep model in RAM rather than swapping or compressing",
typeConverter=TypeConverters.toBoolean)
noKvOffload = Param(Params._dummy(), "noKvOffload", "Whether to disable KV offload",
typeConverter=TypeConverters.toBoolean)
systemPrompt = Param(Params._dummy(), "systemPrompt", "Set a system prompt to use",
typeConverter=TypeConverters.toString)
chatTemplate = Param(Params._dummy(), "chatTemplate", "The chat template to use",
typeConverter=TypeConverters.toString)
# -------- INFERENCE PARAMETERS --------
inputPrefix = Param(Params._dummy(), "inputPrefix", "Set the prompt to start generation with",
typeConverter=TypeConverters.toString)
inputSuffix = Param(Params._dummy(), "inputSuffix", "Set a suffix for infilling",
typeConverter=TypeConverters.toString)
cachePrompt = Param(Params._dummy(), "cachePrompt", "Whether to remember the prompt to avoid reprocessing it",
typeConverter=TypeConverters.toBoolean)
nPredict = Param(Params._dummy(), "nPredict", "Set the number of tokens to predict",
typeConverter=TypeConverters.toInt)
topK = Param(Params._dummy(), "topK", "Set top-k sampling", typeConverter=TypeConverters.toInt)
topP = Param(Params._dummy(), "topP", "Set top-p sampling", typeConverter=TypeConverters.toFloat)
minP = Param(Params._dummy(), "minP", "Set min-p sampling", typeConverter=TypeConverters.toFloat)
tfsZ = Param(Params._dummy(), "tfsZ", "Set tail free sampling, parameter z", typeConverter=TypeConverters.toFloat)
typicalP = Param(Params._dummy(), "typicalP", "Set locally typical sampling, parameter p",
typeConverter=TypeConverters.toFloat)
temperature = Param(Params._dummy(), "temperature", "Set the temperature", typeConverter=TypeConverters.toFloat)
dynamicTemperatureRange = Param(Params._dummy(), "dynatempRange", "Set the dynamic temperature range",
typeConverter=TypeConverters.toFloat)
dynamicTemperatureExponent = Param(Params._dummy(), "dynatempExponent", "Set the dynamic temperature exponent",
typeConverter=TypeConverters.toFloat)
repeatLastN = Param(Params._dummy(), "repeatLastN", "Set the last n tokens to consider for penalties",
typeConverter=TypeConverters.toInt)
repeatPenalty = Param(Params._dummy(), "repeatPenalty", "Set the penalty of repeated sequences of tokens",
typeConverter=TypeConverters.toFloat)
frequencyPenalty = Param(Params._dummy(), "frequencyPenalty", "Set the repetition alpha frequency penalty",
typeConverter=TypeConverters.toFloat)
presencePenalty = Param(Params._dummy(), "presencePenalty", "Set the repetition alpha presence penalty",
typeConverter=TypeConverters.toFloat)
miroStat = Param(Params._dummy(), "miroStat", "Set MiroStat sampling strategies.",
typeConverter=TypeConverters.toString)
miroStatTau = Param(Params._dummy(), "mirostatTau", "Set the MiroStat target entropy, parameter tau",
typeConverter=TypeConverters.toFloat)
miroStatEta = Param(Params._dummy(), "mirostatEta", "Set the MiroStat learning rate, parameter eta",
typeConverter=TypeConverters.toFloat)
penalizeNl = Param(Params._dummy(), "penalizeNl", "Whether to penalize newline tokens",
typeConverter=TypeConverters.toBoolean)
nKeep = Param(Params._dummy(), "nKeep", "Set the number of tokens to keep from the initial prompt",
typeConverter=TypeConverters.toInt)
seed = Param(Params._dummy(), "seed", "Set the RNG seed", typeConverter=TypeConverters.toInt)
nProbs = Param(Params._dummy(), "nProbs", "Set the amount top tokens probabilities to output if greater than 0.",
typeConverter=TypeConverters.toInt)
minKeep = Param(Params._dummy(), "minKeep",
"Set the amount of tokens the samplers should return at least (0 = disabled)",
typeConverter=TypeConverters.toInt)
grammar = Param(Params._dummy(), "grammar", "Set BNF-like grammar to constrain generations",
typeConverter=TypeConverters.toString)
penaltyPrompt = Param(Params._dummy(), "penaltyPrompt",
"Override which part of the prompt is penalized for repetition.",
typeConverter=TypeConverters.toString)
ignoreEos = Param(Params._dummy(), "ignoreEos",
"Set whether to ignore end of stream token and continue generating (implies --logit-bias 2-inf)",
typeConverter=TypeConverters.toBoolean)
disableTokenIds = Param(Params._dummy(), "disableTokenIds", "Set the token ids to disable in the completion",
typeConverter=TypeConverters.toListInt)
stopStrings = Param(Params._dummy(), "stopStrings", "Set strings upon seeing which token generation is stopped",
typeConverter=TypeConverters.toListString)
samplers = Param(Params._dummy(), "samplers", "Set which samplers to use for token generation in the given order",
typeConverter=TypeConverters.toListString)
useChatTemplate = Param(Params._dummy(), "useChatTemplate",
"Set whether or not generate should apply a chat template",
typeConverter=TypeConverters.toBoolean)
# -------- MODEL SETTERS --------
def setNThreads(self, nThreads: int):
"""Set the number of threads to use during generation"""
return self._set(nThreads=nThreads)
def setNThreadsDraft(self, nThreadsDraft: int):
"""Set the number of threads to use during draft generation"""
return self._set(nThreadsDraft=nThreadsDraft)
def setNThreadsBatch(self, nThreadsBatch: int):
"""Set the number of threads to use during batch and prompt processing"""
return self._set(nThreadsBatch=nThreadsBatch)
def setNThreadsBatchDraft(self, nThreadsBatchDraft: int):
"""Set the number of threads to use during batch and prompt processing"""
return self._set(nThreadsBatchDraft=nThreadsBatchDraft)
def setNCtx(self, nCtx: int):
"""Set the size of the prompt context"""
return self._set(nCtx=nCtx)
def setNBatch(self, nBatch: int):
"""Set the logical batch size for prompt processing (must be >=32 to use BLAS)"""
return self._set(nBatch=nBatch)
def setNUbatch(self, nUbatch: int):
"""Set the physical batch size for prompt processing (must be >=32 to use BLAS)"""
return self._set(nUbatch=nUbatch)
def setNDraft(self, nDraft: int):
"""Set the number of tokens to draft for speculative decoding"""
return self._set(nDraft=nDraft)
def setNChunks(self, nChunks: int):
"""Set the maximal number of chunks to process"""
return self._set(nChunks=nChunks)
def setNSequences(self, nSequences: int):
"""Set the number of sequences to decode"""
return self._set(nSequences=nSequences)
def setPSplit(self, pSplit: float):
"""Set the speculative decoding split probability"""
return self._set(pSplit=pSplit)
def setNGpuLayers(self, nGpuLayers: int):
"""Set the number of layers to store in VRAM (-1 - use default)"""
return self._set(nGpuLayers=nGpuLayers)
def setNGpuLayersDraft(self, nGpuLayersDraft: int):
"""Set the number of layers to store in VRAM for the draft model (-1 - use default)"""
return self._set(nGpuLayersDraft=nGpuLayersDraft)
def setGpuSplitMode(self, gpuSplitMode: str):
"""Set how to split the model across GPUs"""