-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathtrain_ensemble.py
85 lines (58 loc) · 1.78 KB
/
train_ensemble.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
# coding: utf-8
# In[1]:
import os
import json
import sys
import argparse
# In[2]:
ARGS_PATH = os.path.abspath("../arglists/cl_args.json")
# In[3]:
def load_json(json_path):
"""Loads a json file with user defined arguments for all models
Args:
json_path: Input filepath
Output:
List of dictionaries, each dictionary representing parameters for
each model
"""
if not os.path.exists(json_path):
print "No json file found"
with open(json_path, 'r') as infile:
return json.load(infile)
# In[4]:
def get_args(model):
"""Parses a model's parameters from a dictionary
Args:
model: Dictionary containing parameters of one model
Output:
args: Exact command line call to be used
"""
args = 'python v2_graph.py'
for key in model.keys():
args = args + ' ' + str(key) + ' ' + str(model[key])
return args
# In[5]:
def finish_parsing():
global ARGS_PATH
parser = argparse.ArgumentParser(description=
'Training an ensemble of convnets')
parser.add_argument("--a",
help="Path to JSON file containing model arguments")
args = parser.parse_args()
if args.a is not None:
ARGS_PATH = os.path.abspath(args.a)
print "New ARGS_PATH = %s" % ARGS_PATH
# In[6]:
def main():
finish_parsing()
models = load_json(ARGS_PATH)
for m in models:
print '--'*30
print 'Beginning training for Model '+m['--model_name'] +'\n'
arg_list = get_args(m)
print arg_list
os.system(arg_list)
# In[7]:
if __name__ == "__main__":
'''sys.argv = ['train_ensemble.py', '--a', '../arglists/cl_args.json']'''
main()