-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodels.py
506 lines (395 loc) · 18 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
import torch
import torch.nn.functional as F
import copy
import numpy as np
import torchvision.transforms as transforms
from sklearn.metrics import accuracy_score, precision_score, recall_score, matthews_corrcoef, f1_score, roc_auc_score, confusion_matrix
# GPU
device = 'cuda' if torch.cuda.is_available() else 'cpu'
# metrics that require average parameter
metrics_with_avg = {'prec' : precision_score, 'recl' : recall_score, 'f1' : f1_score}
avg = 'macro'
# metrics that dont require average parameter
metrics_no_avg = {'accu' : accuracy_score, 'mcc' : matthews_corrcoef}
# a list that contains resnet50 during runtime
resnet50_list = []
# for FedProx
FedProx_mu = 0.01
# for MOON
MOON_temperature = 0.5
MOON_mu = 1.0
class CNN_femnist(torch.nn.Module):
"""
CNN model for FEMNIST dataset. The model structure follows the LEAF framework.
"""
def __init__(self, args: object, image_size: int = 28, num_class: int = 62) -> None:
"""
Arguments:
args (argparse.Namespace): parsed argument object.
image_size (int): height / width of images. The images should be of rectangle shape.
num_class (int): number of classes in the dataset.
"""
super(CNN_femnist, self).__init__()
self.encoder = torch.nn.Sequential(
torch.nn.Conv2d(in_channels = 1, out_channels = 32, kernel_size = 5, padding = 'same'),
torch.nn.ReLU(),
torch.nn.MaxPool2d(kernel_size = 2, stride = 2),
torch.nn.Conv2d(in_channels = 32, out_channels = 64, kernel_size = 5, padding = 'same'),
torch.nn.ReLU(),
torch.nn.MaxPool2d(kernel_size = 2, stride = 2),
torch.nn.Flatten(),
torch.nn.Linear(in_features = 64 * int(image_size / 4) * int(image_size / 4), out_features = 2048),
torch.nn.ReLU(),
)
self.logits = torch.nn.Linear(in_features = 2048, out_features = num_class)
self.optim = args.client_optim
self.lr = args.client_lr
self.reuse_optim = args.reuse_optim
self.optim_state = None
self.binary = False
def forward(self, x: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]:
"""
Arguments:
x (torch.Tensor): input image tensor.
Returns:
x (torch.Tensor): logits (not softmaxed yet).
h (torch.Tensor): latent features (useful for tSNE plot and some FL algorithms).
"""
h = self.encoder(x)
x = self.logits(h)
return x, h
class CNN_celeba(torch.nn.Module):
"""
CNN model for CelebA dataset. The model structure follows the LEAF framework.
"""
def __init__(self, args: object, image_size: int = 84, num_class: int = 2) -> None:
"""
Arguments:
args (argparse.Namespace): parsed argument object.
image_size (int): height / width of image. The image should be of rectangle shape.
num_class (int): number of classes in the dataset.
"""
super(CNN_celeba, self).__init__()
self.encoder = torch.nn.Sequential(
torch.nn.Conv2d(in_channels = 3, out_channels = 32, kernel_size = 3, padding = 'same'),
torch.nn.BatchNorm2d(num_features = 32),
torch.nn.MaxPool2d(kernel_size = 2, stride = 2),
torch.nn.ReLU(),
torch.nn.Conv2d(in_channels = 32, out_channels = 32, kernel_size = 3, padding = 'same'),
torch.nn.BatchNorm2d(num_features = 32),
torch.nn.MaxPool2d(kernel_size = 2, stride = 2),
torch.nn.ReLU(),
torch.nn.Conv2d(in_channels = 32, out_channels = 32, kernel_size = 3, padding = 'same'),
torch.nn.BatchNorm2d(num_features = 32),
torch.nn.MaxPool2d(kernel_size = 2, stride = 2),
torch.nn.ReLU(),
torch.nn.Conv2d(in_channels = 32, out_channels = 32, kernel_size = 3, padding = 'same'),
torch.nn.BatchNorm2d(num_features = 32),
torch.nn.MaxPool2d(kernel_size = 2, stride = 2),
torch.nn.ReLU(),
torch.nn.Flatten(),
)
self.logits = torch.nn.Linear(in_features = 32 * int(image_size / 16) * int(image_size / 16), out_features = num_class)
self.optim = args.client_optim
self.lr = args.client_lr
self.reuse_optim = args.reuse_optim
self.optim_state = None
self.binary = True
def forward(self, x: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]:
"""
Arguments:
x (torch.Tensor): input image tensor.
Returns:
x (torch.Tensor): logits (not softmaxed yet).
h (torch.Tensor): latent features (useful for tSNE plot and some FL algorithms).
"""
h = self.encoder(x)
x = self.logits(h)
return x, h
class LSTM_shakespeare(torch.nn.Module):
"""
LSTM model for Shakespeare dataset. The model structure follows the LEAF framework.
"""
def __init__(self, args: object, embedding_dim: int = 8, hidden_size: int = 256, num_class: int = 80) -> None:
"""
Arguments:
args (argparse.Namespace): parsed argument object.
embedding_dim (int): dimension of character embedding.
hidden_size (int): dimension of LSTM hidden state.
num_class (int): number of classes (unique characters) in the dataset.
"""
super(LSTM_shakespeare, self).__init__()
self.embedding = torch.nn.Embedding(num_embeddings = num_class, embedding_dim = embedding_dim)
self.encoder = torch.nn.LSTM(input_size = embedding_dim, hidden_size = hidden_size, num_layers = 2, batch_first = True)
self.logits = torch.nn.Linear(in_features = hidden_size, out_features = num_class)
self.optim = args.client_optim
self.lr = args.client_lr
self.reuse_optim = args.reuse_optim
self.optim_state = None
self.binary = False
def forward(self, x: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]:
"""
Arguments:
x (torch.Tensor): input image tensor.
Returns:
x (torch.Tensor): logits (not softmaxed yet).
h (torch.Tensor): latent features (useful for tSNE plot and some FL algorithms).
"""
x = self.embedding(x)
x, (hn, cn) = self.encoder(x)
h = x[:, -1, :]
x = self.logits(h)
return x, h
class Resnet50_covid19(torch.nn.Module):
"""
(Obsolete.) Resnet model for Covid-19 dataset.
"""
def __init__(self, args: object, num_class: int = 2, freeze: bool = True) -> None:
"""
Arguments:
args (argparse.Namespace): parsed argument object.
num_class (int): number of classes in the dataset.
freeze (bool): (obsolete) whether conducting transfer learning or finetuning.
"""
super(Resnet50_covid19, self).__init__()
if len(resnet50_list) == 0:
resnet50 = torch.hub.load('pytorch/vision:v0.15.2', 'resnet50', weights = 'ResNet50_Weights.DEFAULT')
resnet50.fc = torch.nn.Identity() # remove last FC layer
for p in resnet50.parameters(): # freeze resnet50
p.requires_grad = False
resnet50.to(device)
resnet50_list.append(resnet50)
assert(len(resnet50_list) == 1)
self.logits = torch.nn.Linear(in_features = 2048, out_features = num_class)
self.t = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
self.optim = args.client_optim
self.lr = args.client_lr
self.reuse_optim = args.reuse_optim
self.optim_state = None
self.binary = True
def forward(self, x: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]:
"""
Arguments:
x (torch.Tensor): input image tensor.
Returns:
x (torch.Tensor): logits (not softmaxed yet).
h (torch.Tensor): latent features (useful for tSNE plot and some FL algorithms).
"""
resnet50 = resnet50_list[0]
# x is of shape (batch_size, 1, 224, 224)
x = x.expand(-1, 3, -1, -1)
x = self.t(x)
h = resnet50(x)
x = self.logits(h)
return x, h
def model_train(model: torch.nn.Module, data_loader: torch.utils.data.DataLoader, num_client_epoch: int) -> None:
"""
Train a model.
Arguments:
model (torch.nn.Module): pytorch model.
data_loader (torch.utils.data.DataLoader): pytorch data loader.
num_client_epoch (int): number of training epochs.
"""
# for covid19 with resnet50
if isinstance(model, Resnet50_covid19):
resnet50_list[0].train()
model.train()
optim = model.optim(model.parameters(), lr = model.lr)
# load previous optimizer state
if model.reuse_optim and model.optim_state is not None:
optim.load_state_dict(model.optim_state)
for current_client_epoch in range(num_client_epoch):
for batch_id, (x, y) in enumerate(data_loader):
x = x.to(device)
y = y.to(device)
p, _ = model(x)
loss = F.cross_entropy(p, y)
loss.backward()
optim.step()
optim.zero_grad()
# stability
for p in model.parameters():
torch.nan_to_num_(p.data, nan=1e-5, posinf=1e-5, neginf=1e-5)
# save optimizer state
if model.reuse_optim:
model.optim_state = copy.deepcopy(optim.state_dict())
def model_train_FedProx(model: torch.nn.Module, global_model: torch.nn.Module, data_loader: torch.utils.data.DataLoader, num_client_epoch: int) -> None:
"""
Train a model when FedProx is chosen for federated learning.
Arguments:
model (torch.nn.Module): pytorch model (client model).
global_model (torch.nn.Module): pytorch model (global model).
data_loader (torch.utils.data.DataLoader): pytorch data loader.
num_client_epoch (int): number of training epochs.
"""
# for covid19 with resnet50
if isinstance(model, Resnet50_covid19):
resnet50_list[0].train()
model.train()
optim = model.optim(model.parameters(), lr = model.lr)
# load previous optimizer state
if model.reuse_optim and model.optim_state is not None:
optim.load_state_dict(model.optim_state)
for current_client_epoch in range(num_client_epoch):
for batch_id, (x, y) in enumerate(data_loader):
x = x.to(device)
y = y.to(device)
p, _ = model(x)
loss = F.cross_entropy(p, y)
# FedProx
for p1, p2 in zip(model.parameters(), global_model.parameters()):
ploss = (p1 - p2.detach()) ** 2
loss += FedProx_mu * ploss.sum()
loss.backward()
optim.step()
optim.zero_grad()
# stability
for p in model.parameters():
torch.nan_to_num_(p.data, nan=1e-5, posinf=1e-5, neginf=1e-5)
# save optimizer state
if model.reuse_optim:
model.optim_state = copy.deepcopy(optim.state_dict())
def model_train_MOON(model: torch.nn.Module, global_model: torch.nn.Module, data_loader: torch.utils.data.DataLoader, previous_features: torch.Tensor) -> torch.Tensor:
"""
Train a model when MOON is chosen for federated learning.
Arguments:
model (torch.nn.Module): pytorch model (client model).
global_model (torch.nn.Module): pytorch model (global model).
data_loader (torch.utils.data.DataLoader): pytorch data loader.
previous_features (torch.Tensor): features extracted by client model in last global epoch.
Returns:
total_features (torch.Tensor): features extracted by client model in current global epoch.
"""
# for covid19 with resnet50
if isinstance(model, Resnet50_covid19):
resnet50_list[0].train()
model.train()
optim = model.optim(model.parameters(), lr = model.lr)
# load previous optimizer state
if model.reuse_optim and model.optim_state is not None:
optim.load_state_dict(model.optim_state)
cos = torch.nn.CosineSimilarity(dim=-1)
for batch_id, (x, y) in enumerate(data_loader):
x = x.to(device)
y = y.to(device)
# feed into model
p, features = model(x)
if batch_id == 0:
total_features = torch.empty((0, features.size()[1]), dtype=torch.float32).to(device)
total_features = torch.cat([total_features, features], dim=0)
loss = F.cross_entropy(p, y)
# for MOON
features_tsne = np.squeeze(features)
_, global_feat = global_model(x)
global_feat_copy = copy.copy(global_feat)
posi = cos(features_tsne, global_feat_copy.to(device))
logits = posi.reshape(-1,1)
if previous_features == None or torch.count_nonzero(previous_features) == 0:
previous_features = torch.zeros_like(features_tsne)
nega = cos(features_tsne, previous_features)
logits = torch.cat((posi.reshape(-1,1), nega.reshape(-1,1)), dim=1)
if previous_features.dim() == 3:
for prev_feat in previous_features[:, batch_id*y.size()[0]:(batch_id+1)*y.size()[0], :]:
prev_nega = cos(features_tsne,prev_feat)
logits = torch.cat((logits, prev_nega.reshape(-1,1)), dim=1)
logits /= MOON_temperature # 0.5
cos_labels = torch.zeros(logits.size(0)).long().to(device)
loss_contrastive = F.cross_entropy(logits, cos_labels)
if torch.count_nonzero(previous_features) != 0:
loss += MOON_mu * loss_contrastive
loss.backward()
optim.step()
optim.zero_grad()
# stability
for p in model.parameters():
torch.nan_to_num_(p.data, nan=1e-5, posinf=1e-5, neginf=1e-5)
# save optimizer state
if model.reuse_optim:
model.optim_state = copy.deepcopy(optim.state_dict())
return total_features
def model_eval(model: torch.nn.Module,
data_loader: torch.utils.data.DataLoader,
wandb_log: dict[str, float],
metric_prefix: str = 'prefix/',
returns: bool = False,
) -> tuple[torch.Tensor, torch.Tensor] | None:
"""
Evaludate the performance of a model with differnt metrics (loss, accuracy, MCC score, precision, recall, F1 score).
Arguments:
model (torch.nn.Module): pytorch model.
data_loader (torch.utils.data.DataLoader): pytorch data loader.
wandb_log (dict[str, float]): wandb log dictionary, with metric name as key and metric value as value.
metric_prefix (str): prefix for metric name.
returns (bool): whether to return ground truth labels and logits, or to calculate metrics
Returns:
epoch_labels (torch.Tensor): ground truth labels.
epoch_predicts (torch.Tensor): logits (not softmaxed yet).
"""
# for covid19 with resnet50
if isinstance(model, Resnet50_covid19):
resnet50_list[0].eval()
model.eval()
epoch_labels = []
epoch_predicts = []
with torch.no_grad():
for batch_id, (x, y) in enumerate(data_loader):
x = x.to(device)
y = y.to(device)
p, _ = model(x)
epoch_labels .append(y)
epoch_predicts.append(p)
epoch_labels = torch.cat(epoch_labels ).detach().to('cpu')
epoch_predicts = torch.cat(epoch_predicts).detach().to('cpu')
if returns:
return epoch_labels, epoch_predicts
else:
cal_metrics(epoch_labels, epoch_predicts, wandb_log, metric_prefix, model.binary)
def cal_metrics(labels: torch.Tensor, preds: torch.Tensor, wandb_log: dict[str, float], metric_prefix: str, binary: bool) -> None:
"""
Compute metrics (loss, accuracy, MCC score, precision, recall, F1 score) using ground truth labels and logits.
Arguments:
labels (torch.Tensor): ground truth labels.
preds (torch.Tensor): logits (not softmaxed yet).
wandb_log (dict[str, float]): wandb log dictionary, with metric name as key and metric value as value.
metric_prefix (str): prefix for metric name.
binary (bool): whether doing binary classification or multi-class classification.
"""
# loss
loss = F.cross_entropy(preds, labels)
wandb_log[metric_prefix + 'loss'] = loss
if not binary: # multi-class
# get probability
preds = torch.softmax(preds, axis = 1)
# ROC AUC
try:
wandb_log[metric_prefix + 'auc'] = roc_auc_score(labels, preds, multi_class = 'ovr')
except Exception:
wandb_log[metric_prefix + 'auc'] = -1
# get class prediction
preds = preds.argmax(axis = 1)
# accuracy and mcc
for metric_name, metric_func in metrics_no_avg.items():
metric = metric_func(labels, preds)
wandb_log[metric_prefix + metric_name] = metric
# precision, recall, f1 score
for metric_name, metric_func in metrics_with_avg.items():
metric = metric_func(labels, preds, average = avg, zero_division = 0)
wandb_log[metric_prefix + metric_name] = metric
else: # binary
# get probability
preds = torch.softmax(preds, axis = 1)[:, 1]
# ROC AUC
try:
wandb_log[metric_prefix + 'auc'] = roc_auc_score(labels, preds)
except Exception:
wandb_log[metric_prefix + 'auc'] = -1
# get class prediction
preds = preds.round()
# accuracy and mcc
for metric_name, metric_func in metrics_no_avg.items():
metric = metric_func(labels, preds)
wandb_log[metric_prefix + metric_name] = metric
# precision, recall, f1 score
for metric_name, metric_func in metrics_with_avg.items():
metric = metric_func(labels, preds, average = avg, zero_division = 0)
wandb_log[metric_prefix + metric_name] = metric