-
Notifications
You must be signed in to change notification settings - Fork 834
/
Copy pathiterative_dpo_train.py
87 lines (71 loc) · 2.86 KB
/
iterative_dpo_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
#!/usr/bin/env python
# coding=utf-8
# Copyright 2024 Statistics and Machine Learning Research Group. All rights reserved.
import logging
import os
import sys
import copy
from transformers import (
HfArgumentParser
)
from lmflow.datasets import Dataset
from lmflow.pipeline.auto_pipeline import AutoPipeline
from lmflow.args import (
ModelArguments,
DatasetArguments,
AutoArguments,
)
from lmflow.utils.common import remove_dataclass_attr_prefix, create_copied_dataclass
logger = logging.getLogger(__name__)
# NOTE:
# In training processes that needs more than one model such as dpo (reference & target),
# ppo (actor & critic), etc., we use the following function to create separate model arguments
# to distinguish among them.
ReferenceModelArguments = create_copied_dataclass(
original_dataclass=ModelArguments,
field_prefix="reference_",
class_prefix="Reference"
)
RewardModelArguments = create_copied_dataclass(
original_dataclass=ModelArguments,
field_prefix="reward_",
class_prefix="Reward"
)
def main():
pipeline_name = "iterative_dpo_aligner"
PipelineArguments = AutoArguments.get_pipeline_args_class(pipeline_name)
parser = HfArgumentParser((
ModelArguments,
ReferenceModelArguments,
RewardModelArguments,
DatasetArguments,
PipelineArguments
))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
model_args, ref_model_args, reward_model_args, data_args, pipeline_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
elif len(sys.argv) == 2 and sys.argv[1].endswith(".yaml"):
model_args, ref_model_args, reward_model_args, data_args, pipeline_args = parser.parse_yaml_file(yaml_file=os.path.abspath(sys.argv[1]))
else:
model_args, ref_model_args, reward_model_args, data_args, pipeline_args = parser.parse_args_into_dataclasses()
ref_model_args_dict = remove_dataclass_attr_prefix(ref_model_args, "reference_")
ref_model_args = ModelArguments(**ref_model_args_dict)
reward_model_args_dict = remove_dataclass_attr_prefix(reward_model_args, "reward_")
reward_model_args = ModelArguments(**reward_model_args_dict)
dataset_list = []
for dataset in pipeline_args.dataset_path_list:
iter_data_args = copy.deepcopy(data_args)
iter_data_args.dataset_path = dataset
dataset_list.append(Dataset(iter_data_args))
aligner = AutoPipeline.get_pipeline(
pipeline_name=pipeline_name,
model_args=model_args,
data_args=data_args,
pipeline_args=pipeline_args,
ref_model_args=ref_model_args,
reward_model_args=reward_model_args,
)
aligner.align(dataset_list=dataset_list)
if __name__ == "__main__":
main()