-
Notifications
You must be signed in to change notification settings - Fork 2.9k
/
Copy pathclrnet_utils.py
309 lines (267 loc) · 9.89 KB
/
clrnet_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from ppdet.modeling.initializer import constant_
from paddle.nn.initializer import KaimingNormal
class ConvModule(nn.Layer):
def __init__(self,
in_channels,
out_channels,
kernel_size=1,
stride=1,
padding=0,
dilation=1,
groups=1,
bias=False,
norm_type='bn',
wtih_act=True):
super(ConvModule, self).__init__()
assert norm_type in ['bn', 'sync_bn', 'gn', None]
self.with_norm = norm_type is not None
self.wtih_act = wtih_act
self.conv = nn.Conv2D(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups,
bias_attr=bias,
weight_attr=KaimingNormal())
if self.with_norm:
if norm_type == 'bn':
self.bn = nn.BatchNorm2D(out_channels)
elif norm_type == 'gn':
self.bn = nn.GroupNorm(out_channels, out_channels)
if self.wtih_act:
self.act = nn.ReLU()
def forward(self, inputs):
x = self.conv(inputs)
if self.with_norm:
x = self.bn(x)
if self.wtih_act:
x = self.act(x)
return x
def LinearModule(hidden_dim):
return nn.LayerList(
[nn.Linear(
hidden_dim, hidden_dim, bias_attr=True), nn.ReLU()])
class FeatureResize(nn.Layer):
def __init__(self, size=(10, 25)):
super(FeatureResize, self).__init__()
self.size = size
def forward(self, x):
x = F.interpolate(x, self.size)
return x.flatten(2)
class ROIGather(nn.Layer):
'''
ROIGather module for gather global information
Args:
in_channels: prior feature channels
num_priors: prior numbers we predefined
sample_points: the number of sampled points when we extract feature from line
fc_hidden_dim: the fc output channel
refine_layers: the total number of layers to build refine
'''
def __init__(self,
in_channels,
num_priors,
sample_points,
fc_hidden_dim,
refine_layers,
mid_channels=48):
super(ROIGather, self).__init__()
self.in_channels = in_channels
self.num_priors = num_priors
self.f_key = ConvModule(
in_channels=self.in_channels,
out_channels=self.in_channels,
kernel_size=1,
stride=1,
padding=0,
norm_type='bn')
self.f_query = nn.Sequential(
nn.Conv1D(
in_channels=num_priors,
out_channels=num_priors,
kernel_size=1,
stride=1,
padding=0,
groups=num_priors),
nn.ReLU(), )
self.f_value = nn.Conv2D(
in_channels=self.in_channels,
out_channels=self.in_channels,
kernel_size=1,
stride=1,
padding=0)
self.W = nn.Conv1D(
in_channels=num_priors,
out_channels=num_priors,
kernel_size=1,
stride=1,
padding=0,
groups=num_priors)
self.resize = FeatureResize()
constant_(self.W.weight, 0)
constant_(self.W.bias, 0)
self.convs = nn.LayerList()
self.catconv = nn.LayerList()
for i in range(refine_layers):
self.convs.append(
ConvModule(
in_channels,
mid_channels, (9, 1),
padding=(4, 0),
bias=False,
norm_type='bn'))
self.catconv.append(
ConvModule(
mid_channels * (i + 1),
in_channels, (9, 1),
padding=(4, 0),
bias=False,
norm_type='bn'))
self.fc = nn.Linear(
sample_points * fc_hidden_dim, fc_hidden_dim, bias_attr=True)
self.fc_norm = nn.LayerNorm(fc_hidden_dim)
def roi_fea(self, x, layer_index):
feats = []
for i, feature in enumerate(x):
feat_trans = self.convs[i](feature)
feats.append(feat_trans)
cat_feat = paddle.concat(feats, axis=1)
cat_feat = self.catconv[layer_index](cat_feat)
return cat_feat
def forward(self, roi_features, x, layer_index):
'''
Args:
roi_features: prior feature, shape: (Batch * num_priors, prior_feat_channel, sample_point, 1)
x: feature map
layer_index: currently on which layer to refine
Return:
roi: prior features with gathered global information, shape: (Batch, num_priors, fc_hidden_dim)
'''
roi = self.roi_fea(roi_features, layer_index)
# return roi
# print(roi.shape)
# return roi
bs = x.shape[0]
# print(bs)
#roi = roi.contiguous().view(bs * self.num_priors, -1)
roi = roi.reshape([bs * self.num_priors, -1])
# roi = paddle.randn([192,2304])
# return roi
# print(roi)
# print(self.fc)
# print(self.fc.weight)
roi = self.fc(roi)
roi = F.relu(self.fc_norm(roi))
# return roi
#roi = roi.view(bs, self.num_priors, -1)
roi = roi.reshape([bs, self.num_priors, -1])
query = roi
value = self.resize(self.f_value(x)) # (B, C, N) global feature
query = self.f_query(
query) # (B, N, 1) sample context feature from prior roi
key = self.f_key(x)
value = value.transpose(perm=[0, 2, 1])
key = self.resize(key) # (B, C, N) global feature
sim_map = paddle.matmul(query, key)
sim_map = (self.in_channels**-.5) * sim_map
sim_map = F.softmax(sim_map, axis=-1)
context = paddle.matmul(sim_map, value)
context = self.W(context)
roi = roi + F.dropout(context, p=0.1, training=self.training)
return roi
class SegDecoder(nn.Layer):
'''
Optionaly seg decoder
'''
def __init__(self,
image_height,
image_width,
num_class,
prior_feat_channels=64,
refine_layers=3):
super().__init__()
self.dropout = nn.Dropout2D(0.1)
self.conv = nn.Conv2D(prior_feat_channels * refine_layers, num_class, 1)
self.image_height = image_height
self.image_width = image_width
def forward(self, x):
x = self.dropout(x)
x = self.conv(x)
x = F.interpolate(
x,
size=[self.image_height, self.image_width],
mode='bilinear',
align_corners=False)
return x
import paddle.nn as nn
def accuracy(pred, target, topk=1, thresh=None):
"""Calculate accuracy according to the prediction and target.
Args:
pred (torch.Tensor): The model prediction, shape (N, num_class)
target (torch.Tensor): The target of each prediction, shape (N, )
topk (int | tuple[int], optional): If the predictions in ``topk``
matches the target, the predictions will be regarded as
correct ones. Defaults to 1.
thresh (float, optional): If not None, predictions with scores under
this threshold are considered incorrect. Default to None.
Returns:
float | tuple[float]: If the input ``topk`` is a single integer,
the function will return a single float as accuracy. If
``topk`` is a tuple containing multiple integers, the
function will return a tuple containing accuracies of
each ``topk`` number.
"""
assert isinstance(topk, (int, tuple))
if isinstance(topk, int):
topk = (topk, )
return_single = True
else:
return_single = False
maxk = max(topk)
if pred.shape[0] == 0:
accu = [pred.new_tensor(0.) for i in range(len(topk))]
return accu[0] if return_single else accu
assert pred.ndim == 2 and target.ndim == 1
assert pred.shape[0] == target.shape[0]
assert maxk <= pred.shape[1], \
f'maxk {maxk} exceeds pred dimension {pred.shape[1]}'
pred_value, pred_label = pred.topk(maxk, axis=1)
pred_label = pred_label.t() # transpose to shape (maxk, N)
correct = pred_label.equal(target.reshape([1, -1]).expand_as(pred_label))
if thresh is not None:
# Only prediction values larger than thresh are counted as correct
correct = correct & (pred_value > thresh).t()
res = []
for k in topk:
correct_k = correct[:k].reshape([-1]).cast("float32").sum(0,
keepdim=True)
correct_k = correct_k * (100.0 / pred.shape[0])
res.append(correct_k)
return res[0] if return_single else res
class Accuracy(nn.Layer):
def __init__(self, topk=(1, ), thresh=None):
"""Module to calculate the accuracy.
Args:
topk (tuple, optional): The criterion used to calculate the
accuracy. Defaults to (1,).
thresh (float, optional): If not None, predictions with scores
under this threshold are considered incorrect. Default to None.
"""
super().__init__()
self.topk = topk
self.thresh = thresh
def forward(self, pred, target):
"""Forward function to calculate accuracy.
Args:
pred (torch.Tensor): Prediction of models.
target (torch.Tensor): Target for each prediction.
Returns:
tuple[float]: The accuracies under different topk criterions.
"""
return accuracy(pred, target, self.topk, self.thresh)