-
Notifications
You must be signed in to change notification settings - Fork 2.9k
/
Copy pathrbox_utils.py
295 lines (251 loc) · 9.27 KB
/
rbox_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import paddle
import numpy as np
import cv2
def norm_angle(angle, range=[-np.pi / 4, np.pi]):
return (angle - range[0]) % range[1] + range[0]
# rbox function implemented using numpy
def poly2rbox_le135_np(poly):
"""convert poly to rbox [-pi / 4, 3 * pi / 4]
Args:
poly: [x1, y1, x2, y2, x3, y3, x4, y4]
Returns:
rbox: [cx, cy, w, h, angle]
"""
poly = np.array(poly[:8], dtype=np.float32)
pt1 = (poly[0], poly[1])
pt2 = (poly[2], poly[3])
pt3 = (poly[4], poly[5])
pt4 = (poly[6], poly[7])
edge1 = np.sqrt((pt1[0] - pt2[0]) * (pt1[0] - pt2[0]) + (pt1[1] - pt2[1]) *
(pt1[1] - pt2[1]))
edge2 = np.sqrt((pt2[0] - pt3[0]) * (pt2[0] - pt3[0]) + (pt2[1] - pt3[1]) *
(pt2[1] - pt3[1]))
width = max(edge1, edge2)
height = min(edge1, edge2)
rbox_angle = 0
if edge1 > edge2:
rbox_angle = np.arctan2(float(pt2[1] - pt1[1]), float(pt2[0] - pt1[0]))
elif edge2 >= edge1:
rbox_angle = np.arctan2(float(pt4[1] - pt1[1]), float(pt4[0] - pt1[0]))
rbox_angle = norm_angle(rbox_angle)
x_ctr = float(pt1[0] + pt3[0]) / 2
y_ctr = float(pt1[1] + pt3[1]) / 2
return [x_ctr, y_ctr, width, height, rbox_angle]
def poly2rbox_oc_np(poly):
"""convert poly to rbox (0, pi / 2]
Args:
poly: [x1, y1, x2, y2, x3, y3, x4, y4]
Returns:
rbox: [cx, cy, w, h, angle]
"""
points = np.array(poly, dtype=np.float32).reshape((-1, 2))
(cx, cy), (w, h), angle = cv2.minAreaRect(points)
# using the new OpenCV Rotated BBox definition since 4.5.1
# if angle < 0, opencv is older than 4.5.1, angle is in [-90, 0)
if angle < 0:
angle += 90
w, h = h, w
# convert angle to [0, 90)
if angle == -0.0:
angle = 0.0
if angle == 90.0:
angle = 0.0
w, h = h, w
angle = angle / 180 * np.pi
return [cx, cy, w, h, angle]
def poly2rbox_np(polys, rbox_type='oc'):
"""
polys: [x0,y0,x1,y1,x2,y2,x3,y3]
to
rboxes: [x_ctr,y_ctr,w,h,angle]
"""
assert rbox_type in ['oc', 'le135'], 'only oc or le135 is supported now'
poly2rbox_fn = poly2rbox_oc_np if rbox_type == 'oc' else poly2rbox_le135_np
rboxes = []
for poly in polys:
x, y, w, h, angle = poly2rbox_fn(poly)
rbox = np.array([x, y, w, h, angle], dtype=np.float32)
rboxes.append(rbox)
return np.array(rboxes)
def cal_line_length(point1, point2):
return math.sqrt(
math.pow(point1[0] - point2[0], 2) + math.pow(point1[1] - point2[1], 2))
def get_best_begin_point_single(coordinate):
x1, y1, x2, y2, x3, y3, x4, y4 = coordinate
xmin = min(x1, x2, x3, x4)
ymin = min(y1, y2, y3, y4)
xmax = max(x1, x2, x3, x4)
ymax = max(y1, y2, y3, y4)
combinate = [[[x1, y1], [x2, y2], [x3, y3], [x4, y4]],
[[x4, y4], [x1, y1], [x2, y2], [x3, y3]],
[[x3, y3], [x4, y4], [x1, y1], [x2, y2]],
[[x2, y2], [x3, y3], [x4, y4], [x1, y1]]]
dst_coordinate = [[xmin, ymin], [xmax, ymin], [xmax, ymax], [xmin, ymax]]
force = 100000000.0
force_flag = 0
for i in range(4):
temp_force = cal_line_length(combinate[i][0], dst_coordinate[0]) \
+ cal_line_length(combinate[i][1], dst_coordinate[1]) \
+ cal_line_length(combinate[i][2], dst_coordinate[2]) \
+ cal_line_length(combinate[i][3], dst_coordinate[3])
if temp_force < force:
force = temp_force
force_flag = i
if force_flag != 0:
pass
return np.array(combinate[force_flag]).reshape(8)
def rbox2poly_np(rboxes):
"""
rboxes:[x_ctr,y_ctr,w,h,angle]
to
poly:[x0,y0,x1,y1,x2,y2,x3,y3]
"""
polys = []
for i in range(len(rboxes)):
x_ctr, y_ctr, width, height, angle = rboxes[i][:5]
tl_x, tl_y, br_x, br_y = -width / 2, -height / 2, width / 2, height / 2
rect = np.array([[tl_x, br_x, br_x, tl_x], [tl_y, tl_y, br_y, br_y]])
R = np.array([[np.cos(angle), -np.sin(angle)],
[np.sin(angle), np.cos(angle)]])
poly = R.dot(rect)
x0, x1, x2, x3 = poly[0, :4] + x_ctr
y0, y1, y2, y3 = poly[1, :4] + y_ctr
poly = np.array([x0, y0, x1, y1, x2, y2, x3, y3], dtype=np.float32)
poly = get_best_begin_point_single(poly)
polys.append(poly)
polys = np.array(polys)
return polys
# rbox function implemented using paddle
def box2corners(box):
"""convert box coordinate to corners
Args:
box (Tensor): (B, N, 5) with (x, y, w, h, alpha) angle is in [0, 90)
Returns:
corners (Tensor): (B, N, 4, 2) with (x1, y1, x2, y2, x3, y3, x4, y4)
"""
B = box.shape[0]
x, y, w, h, alpha = paddle.split(box, 5, axis=-1)
x4 = paddle.to_tensor(
[0.5, 0.5, -0.5, -0.5], dtype=paddle.float32).reshape(
(1, 1, 4)) # (1,1,4)
x4 = x4 * w # (B, N, 4)
y4 = paddle.to_tensor(
[-0.5, 0.5, 0.5, -0.5], dtype=paddle.float32).reshape((1, 1, 4))
y4 = y4 * h # (B, N, 4)
corners = paddle.stack([x4, y4], axis=-1) # (B, N, 4, 2)
sin = paddle.sin(alpha)
cos = paddle.cos(alpha)
row1 = paddle.concat([cos, sin], axis=-1)
row2 = paddle.concat([-sin, cos], axis=-1) # (B, N, 2)
rot_T = paddle.stack([row1, row2], axis=-2) # (B, N, 2, 2)
rotated = paddle.bmm(corners.reshape([-1, 4, 2]), rot_T.reshape([-1, 2, 2]))
rotated = rotated.reshape([B, -1, 4, 2]) # (B*N, 4, 2) -> (B, N, 4, 2)
rotated[..., 0] += x
rotated[..., 1] += y
return rotated
def paddle_gather(x, dim, index):
index_shape = index.shape
index_flatten = index.flatten()
if dim < 0:
dim = len(x.shape) + dim
nd_index = []
for k in range(len(x.shape)):
if k == dim:
nd_index.append(index_flatten)
else:
reshape_shape = [1] * len(x.shape)
reshape_shape[k] = x.shape[k]
x_arange = paddle.arange(x.shape[k], dtype=index.dtype)
x_arange = x_arange.reshape(reshape_shape)
dim_index = paddle.expand(x_arange, index_shape).flatten()
nd_index.append(dim_index)
ind2 = paddle.transpose(paddle.stack(nd_index), [1, 0]).astype("int64")
paddle_out = paddle.gather_nd(x, ind2).reshape(index_shape)
return paddle_out
def check_points_in_polys(points, polys):
"""Check whether point is in rotated boxes
Args:
points (tensor): (1, L, 2) anchor points
polys (tensor): [B, N, 4, 2] gt_polys
eps (float): default 1e-9
Returns:
is_in_polys (tensor): (B, N, L)
"""
# [1, L, 2] -> [1, 1, L, 2]
points = points.unsqueeze(0)
# [B, N, 4, 2] -> [B, N, 1, 2]
a, b, c, d = polys.split(4, axis=2)
ab = b - a
ad = d - a
# [B, N, L, 2]
ap = points - a
# [B, N, 1]
norm_ab = paddle.sum(ab * ab, axis=-1)
# [B, N, 1]
norm_ad = paddle.sum(ad * ad, axis=-1)
# [B, N, L] dot product
ap_dot_ab = paddle.sum(ap * ab, axis=-1)
# [B, N, L] dot product
ap_dot_ad = paddle.sum(ap * ad, axis=-1)
# [B, N, L] <A, B> = |A|*|B|*cos(theta)
is_in_polys = (ap_dot_ab >= 0) & (ap_dot_ab <= norm_ab) & (
ap_dot_ad >= 0) & (ap_dot_ad <= norm_ad)
return is_in_polys
def check_points_in_rotated_boxes(points, boxes):
"""Check whether point is in rotated boxes
Args:
points (tensor): (1, L, 2) anchor points
boxes (tensor): [B, N, 5] gt_bboxes
eps (float): default 1e-9
Returns:
is_in_box (tensor): (B, N, L)
"""
# [B, N, 5] -> [B, N, 4, 2]
corners = box2corners(boxes)
# [1, L, 2] -> [1, 1, L, 2]
points = points.unsqueeze(0)
# [B, N, 4, 2] -> [B, N, 1, 2]
a, b, c, d = corners.split(4, axis=2)
ab = b - a
ad = d - a
# [B, N, L, 2]
ap = points - a
# [B, N, L]
norm_ab = paddle.sum(ab * ab, axis=-1)
# [B, N, L]
norm_ad = paddle.sum(ad * ad, axis=-1)
# [B, N, L] dot product
ap_dot_ab = paddle.sum(ap * ab, axis=-1)
# [B, N, L] dot product
ap_dot_ad = paddle.sum(ap * ad, axis=-1)
# [B, N, L] <A, B> = |A|*|B|*cos(theta)
is_in_box = (ap_dot_ab >= 0) & (ap_dot_ab <= norm_ab) & (ap_dot_ad >= 0) & (
ap_dot_ad <= norm_ad)
return is_in_box
def rotated_iou_similarity(box1, box2, eps=1e-9, func=''):
"""Calculate iou of box1 and box2
Args:
box1 (Tensor): box with the shape [N, M1, 5]
box2 (Tensor): box with the shape [N, M2, 5]
Return:
iou (Tensor): iou between box1 and box2 with the shape [N, M1, M2]
"""
from ext_op import rbox_iou
rotated_ious = []
for b1, b2 in zip(box1, box2):
rotated_ious.append(rbox_iou(b1, b2))
return paddle.stack(rotated_ious, axis=0)