-
Notifications
You must be signed in to change notification settings - Fork 2.9k
/
Copy pathoptimizer.py
362 lines (306 loc) · 12.2 KB
/
optimizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import re
import sys
import math
import paddle
import paddle.nn as nn
import paddle.optimizer as optimizer
import paddle.regularizer as regularizer
from ppdet.core.workspace import register, serializable
import copy
from .adamw import AdamWDL, build_adamwdl
__all__ = ['LearningRate', 'OptimizerBuilder']
from ppdet.utils.logger import setup_logger
logger = setup_logger(__name__)
@serializable
class CosineDecay(object):
"""
Cosine learning rate decay
Args:
max_epochs (int): max epochs for the training process.
if you commbine cosine decay with warmup, it is recommended that
the max_iters is much larger than the warmup iter
use_warmup (bool): whether to use warmup. Default: True.
min_lr_ratio (float): minimum learning rate ratio. Default: 0.
last_plateau_epochs (int): use minimum learning rate in
the last few epochs. Default: 0.
"""
def __init__(self,
max_epochs=1000,
use_warmup=True,
min_lr_ratio=0.,
last_plateau_epochs=0):
self.max_epochs = max_epochs
self.use_warmup = use_warmup
self.min_lr_ratio = min_lr_ratio
self.last_plateau_epochs = last_plateau_epochs
def __call__(self,
base_lr=None,
boundary=None,
value=None,
step_per_epoch=None):
assert base_lr is not None, "either base LR or values should be provided"
max_iters = self.max_epochs * int(step_per_epoch)
last_plateau_iters = self.last_plateau_epochs * int(step_per_epoch)
min_lr = base_lr * self.min_lr_ratio
if boundary is not None and value is not None and self.use_warmup:
# use warmup
warmup_iters = len(boundary)
for i in range(int(boundary[-1]), max_iters):
boundary.append(i)
if i < max_iters - last_plateau_iters:
decayed_lr = min_lr + (base_lr - min_lr) * 0.5 * (math.cos(
(i - warmup_iters) * math.pi /
(max_iters - warmup_iters - last_plateau_iters)) + 1)
value.append(decayed_lr)
else:
value.append(min_lr)
return optimizer.lr.PiecewiseDecay(boundary, value)
elif last_plateau_iters > 0:
# not use warmup, but set `last_plateau_epochs` > 0
boundary = []
value = []
for i in range(max_iters):
if i < max_iters - last_plateau_iters:
decayed_lr = min_lr + (base_lr - min_lr) * 0.5 * (math.cos(
i * math.pi / (max_iters - last_plateau_iters)) + 1)
value.append(decayed_lr)
else:
value.append(min_lr)
if i > 0:
boundary.append(i)
return optimizer.lr.PiecewiseDecay(boundary, value)
return optimizer.lr.CosineAnnealingDecay(
base_lr, T_max=max_iters, eta_min=min_lr)
@serializable
class PiecewiseDecay(object):
"""
Multi step learning rate decay
Args:
gamma (float | list): decay factor
milestones (list): steps at which to decay learning rate
"""
def __init__(self,
gamma=[0.1, 0.01],
milestones=[8, 11],
values=None,
use_warmup=True):
super(PiecewiseDecay, self).__init__()
if type(gamma) is not list:
self.gamma = []
for i in range(len(milestones)):
self.gamma.append(gamma / 10**i)
else:
self.gamma = gamma
self.milestones = milestones
self.values = values
self.use_warmup = use_warmup
def __call__(self,
base_lr=None,
boundary=None,
value=None,
step_per_epoch=None):
if boundary is not None and self.use_warmup:
boundary.extend([int(step_per_epoch) * i for i in self.milestones])
else:
# do not use LinearWarmup
boundary = [int(step_per_epoch) * i for i in self.milestones]
value = [base_lr] # during step[0, boundary[0]] is base_lr
# self.values is setted directly in config
if self.values is not None:
assert len(self.milestones) + 1 == len(self.values)
return optimizer.lr.PiecewiseDecay(boundary, self.values)
# value is computed by self.gamma
value = value if value is not None else [base_lr]
for i in self.gamma:
value.append(base_lr * i)
return optimizer.lr.PiecewiseDecay(boundary, value)
@serializable
class LinearWarmup(object):
"""
Warm up learning rate linearly
Args:
steps (int): warm up steps
start_factor (float): initial learning rate factor
epochs (int|None): use epochs as warm up steps, the priority
of `epochs` is higher than `steps`. Default: None.
"""
def __init__(self, steps=500, start_factor=1. / 3, epochs=None, epochs_first=True):
super(LinearWarmup, self).__init__()
self.steps = steps
self.start_factor = start_factor
self.epochs = epochs
self.epochs_first = epochs_first
def __call__(self, base_lr, step_per_epoch):
boundary = []
value = []
if self.epochs_first and self.epochs is not None:
warmup_steps = self.epochs * step_per_epoch
else:
warmup_steps = self.steps
warmup_steps = max(warmup_steps, 1)
for i in range(warmup_steps + 1):
if warmup_steps > 0:
alpha = i / warmup_steps
factor = self.start_factor * (1 - alpha) + alpha
lr = base_lr * factor
value.append(lr)
if i > 0:
boundary.append(i)
return boundary, value
@serializable
class ExpWarmup(object):
"""
Warm up learning rate in exponential mode
Args:
steps (int): warm up steps.
epochs (int|None): use epochs as warm up steps, the priority
of `epochs` is higher than `steps`. Default: None.
power (int): Exponential coefficient. Default: 2.
"""
def __init__(self, steps=1000, epochs=None, power=2):
super(ExpWarmup, self).__init__()
self.steps = steps
self.epochs = epochs
self.power = power
def __call__(self, base_lr, step_per_epoch):
boundary = []
value = []
warmup_steps = self.epochs * step_per_epoch if self.epochs is not None else self.steps
warmup_steps = max(warmup_steps, 1)
for i in range(warmup_steps + 1):
factor = (i / float(warmup_steps))**self.power
value.append(base_lr * factor)
if i > 0:
boundary.append(i)
return boundary, value
@register
class LearningRate(object):
"""
Learning Rate configuration
Args:
base_lr (float): base learning rate
schedulers (list): learning rate schedulers
"""
__category__ = 'optim'
def __init__(self,
base_lr=0.01,
schedulers=[PiecewiseDecay(), LinearWarmup()]):
super(LearningRate, self).__init__()
self.base_lr = base_lr
self.schedulers = []
schedulers = copy.deepcopy(schedulers)
for sched in schedulers:
if isinstance(sched, dict):
# support dict sched instantiate
module = sys.modules[__name__]
type = sched.pop("name")
scheduler = getattr(module, type)(**sched)
self.schedulers.append(scheduler)
else:
self.schedulers.append(sched)
def __call__(self, step_per_epoch):
assert len(self.schedulers) >= 1
if not self.schedulers[0].use_warmup:
return self.schedulers[0](base_lr=self.base_lr,
step_per_epoch=step_per_epoch)
# TODO: split warmup & decay
# warmup
boundary, value = self.schedulers[1](self.base_lr, step_per_epoch)
# decay
decay_lr = self.schedulers[0](self.base_lr, boundary, value,
step_per_epoch)
return decay_lr
@register
class OptimizerBuilder():
"""
Build optimizer handles
Args:
regularizer (object): an `Regularizer` instance
optimizer (object): an `Optimizer` instance
"""
__category__ = 'optim'
def __init__(self,
clip_grad_by_norm=None,
clip_grad_by_value=None,
regularizer={'type': 'L2',
'factor': .0001},
optimizer={'type': 'Momentum',
'momentum': .9}):
self.clip_grad_by_norm = clip_grad_by_norm
self.clip_grad_by_value = clip_grad_by_value
self.regularizer = regularizer
self.optimizer = optimizer
def __call__(self, learning_rate, model=None):
if self.clip_grad_by_norm is not None:
grad_clip = nn.ClipGradByGlobalNorm(
clip_norm=self.clip_grad_by_norm)
elif self.clip_grad_by_value is not None:
var = abs(self.clip_grad_by_value)
grad_clip = nn.ClipGradByValue(min=-var, max=var)
else:
grad_clip = None
if self.regularizer and self.regularizer != 'None':
reg_type = self.regularizer['type'] + 'Decay'
reg_factor = self.regularizer['factor']
regularization = getattr(regularizer, reg_type)(reg_factor)
else:
regularization = None
optim_args = self.optimizer.copy()
optim_type = optim_args['type']
del optim_args['type']
if optim_type == 'AdamWDL':
return build_adamwdl(model, lr=learning_rate, **optim_args)
if optim_type != 'AdamW':
optim_args['weight_decay'] = regularization
op = getattr(optimizer, optim_type)
if 'param_groups' in optim_args:
assert isinstance(optim_args['param_groups'], list), ''
param_groups = optim_args.pop('param_groups')
params, visited = [], []
for group in param_groups:
assert isinstance(group,
dict) and 'params' in group and isinstance(
group['params'], list), ''
_params = {}
for n, p in model.named_parameters():
if not p.trainable:
continue
for k in group['params']:
if re.search(k, n):
_params.update({n: p})
break
_group = group.copy()
_group.update({'params': list(_params.values())})
params.append(_group)
visited.extend(list(_params.keys()))
ext_params = [
p for n, p in model.named_parameters()
if n not in visited and p.trainable is True
]
if len(ext_params) < len(model.parameters()):
params.append({'params': ext_params})
elif len(ext_params) > len(model.parameters()):
raise RuntimeError
else:
_params = model.parameters()
params = [param for param in _params if param.trainable is True]
return op(learning_rate=learning_rate,
parameters=params,
grad_clip=grad_clip,
**optim_args)