-
Notifications
You must be signed in to change notification settings - Fork 3k
/
Copy pathtest_fill_mask.py
64 lines (52 loc) · 2.67 KB
/
test_fill_mask.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import unittest
from tempfile import TemporaryDirectory
from parameterized import parameterized
from paddlenlp.taskflow import Taskflow
from paddlenlp.taskflow.fill_mask import FillMaskTask
from paddlenlp.transformers import AutoTokenizer, ErnieForMaskedLM
class TestFillMaskTask(unittest.TestCase):
def setUp(self):
self.temp_dir = TemporaryDirectory()
self.model_path = os.path.join(self.temp_dir.name, "model")
model = ErnieForMaskedLM.from_pretrained("__internal_testing__/tiny-random-ernie")
tokenizer = AutoTokenizer.from_pretrained("__internal_testing__/tiny-random-ernie")
model.save_pretrained(self.model_path)
tokenizer.save_pretrained(self.model_path)
def tearDown(self):
self.temp_dir.cleanup()
def test_fill_mask_taskflow_invalid_inputs(self):
taskflow = FillMaskTask(task="fill_mask", task_path=self.model_path)
with self.assertRaises(ValueError):
taskflow((["飞桨深度学习框"],))
taskflow((["飞[MASK]深度学[MASK]"],))
@parameterized.expand([(1, 1), (2, 3)])
def test_fill_mask_taskflow(self, batch_size: int, top_k: int):
# input_text is a tuple to simulate the args passed from Taskflow to TextClassificationTask
input_text = (["飞桨深度学习框[MASK]", "生活的真谛是[MASK]"],)
taskflow = FillMaskTask(task="fill_mask", task_path=self.model_path, batch_size=batch_size, top_k=top_k)
results = taskflow(input_text)
self.assertEqual(len(results), len(input_text[0]))
for result in results:
self.assertEqual(len(result), top_k)
@parameterized.expand([(1, 1), (2, 3)])
def test_taskflow(self, batch_size: int, top_k: int):
input_text = ["飞桨深度学习框[MASK]", "生活的真谛是[MASK]"]
taskflow = Taskflow(task="fill_mask", task_path=self.model_path, batch_size=batch_size, top_k=top_k)
results = taskflow(input_text)
self.assertEqual(len(results), len(input_text))
for result in results:
self.assertEqual(len(result), top_k)