-
Notifications
You must be signed in to change notification settings - Fork 3k
/
Copy pathtest_text_feature_extraction.py
158 lines (138 loc) · 5.9 KB
/
test_text_feature_extraction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from tempfile import TemporaryDirectory
from paddlenlp.taskflow import Taskflow
from paddlenlp.taskflow.text_feature_extraction import (
SentenceFeatureExtractionTask,
TextFeatureExtractionTask,
)
class TestTextFeatureExtractionTask(unittest.TestCase):
@classmethod
def setUpClass(cls):
cls.temp_dir = TemporaryDirectory()
cls.max_seq_len = 32
cls.model = "__internal_testing__/tiny-random-rocketqa-query-encoder"
@classmethod
def tearDownClass(cls):
cls.temp_dir.cleanup()
@unittest.skipIf(True, "TODO, fix ci for new from_pretrained!")
def test_text_feature_extraction_task(self):
input_text = (["这是一只猫", "这是一只狗"],)
# dygraph text test
dygraph_taskflow = TextFeatureExtractionTask(
model="rocketqa-zh-nano-query-encoder",
task="feature_extraction",
task_path=self.model,
_static_mode=False,
device_id=0,
)
dygraph_results = dygraph_taskflow(input_text)
shape = dygraph_results["features"].shape
self.assertEqual(shape[0], 2)
# static text test
static_taskflow = TextFeatureExtractionTask(
model="rocketqa-zh-nano-query-encoder",
task="feature_extraction",
task_path=self.model,
_static_mode=True,
device_id=0,
)
static_results = static_taskflow(input_text)
shape = static_results["features"].shape
self.assertEqual(shape[0], 2)
for dygraph_result, static_result in zip(dygraph_results["features"], static_results["features"]):
for dygraph_pred, static_pred in zip(dygraph_result.tolist(), static_result.tolist()):
self.assertAlmostEqual(dygraph_pred, static_pred, delta=1e-5)
@unittest.skipIf(True, "TODO, fix ci for new from_pretrained!")
def test_taskflow_task(self):
input_text = ["这是一只猫", "这是一只狗"]
# dygraph test
dygraph_taskflow = Taskflow(
model="rocketqa-zh-nano-query-encoder",
task="feature_extraction",
task_path=self.model,
_static_mode=False,
)
dygraph_results = dygraph_taskflow(input_text)
shape = dygraph_results["features"].shape
self.assertEqual(shape[0], 2)
# static test
static_taskflow = Taskflow(
model="rocketqa-zh-nano-query-encoder",
task="feature_extraction",
task_path=self.model,
_static_mode=True,
)
static_results = static_taskflow(input_text)
self.assertEqual(static_results["features"].shape[0], 2)
for dygraph_result, static_result in zip(dygraph_results["features"], static_results["features"]):
for dygraph_pred, static_pred in zip(dygraph_result.tolist(), static_result.tolist()):
self.assertAlmostEqual(dygraph_pred, static_pred, delta=1e-5)
class TestSentenceeExtractionTask(unittest.TestCase):
@classmethod
def setUpClass(cls):
cls.temp_dir = TemporaryDirectory()
cls.max_seq_len = 32
cls.model = "__internal_testing__/tiny-random-m3e"
@classmethod
def tearDownClass(cls):
cls.temp_dir.cleanup()
def test_text_feature_extraction_task(self):
input_text = (["这是一只猫", "这是一只狗"],)
# dygraph text test
dygraph_taskflow = SentenceFeatureExtractionTask(
model=self.model,
task="feature_extraction",
_static_mode=False,
device_id=0,
)
dygraph_results = dygraph_taskflow(input_text)
shape = dygraph_results["features"].shape
self.assertEqual(shape, [2, 768])
# static text test
static_taskflow = SentenceFeatureExtractionTask(
model=self.model,
task="feature_extraction",
_static_mode=True,
device_id=0,
)
static_results = static_taskflow(input_text)
shape = static_results["features"].shape
self.assertEqual(shape, [2, 768])
for dygraph_result, static_result in zip(dygraph_results["features"], static_results["features"]):
for dygraph_pred, static_pred in zip(dygraph_result.tolist(), static_result.tolist()):
self.assertAlmostEqual(dygraph_pred, static_pred, delta=1e-5)
def test_taskflow_task(self):
input_text = ["这是一只猫", "这是一只狗"]
# dygraph test
dygraph_taskflow = Taskflow(
model=self.model,
task="feature_extraction",
_static_mode=False,
)
dygraph_results = dygraph_taskflow(input_text)
shape = dygraph_results["features"].shape
self.assertEqual(shape, [2, 768])
# static test
static_taskflow = Taskflow(
model=self.model,
task="feature_extraction",
_static_mode=True,
)
static_results = static_taskflow(input_text)
self.assertEqual(static_results["features"].shape, [2, 768])
for dygraph_result, static_result in zip(dygraph_results["features"], static_results["features"]):
for dygraph_pred, static_pred in zip(dygraph_result.tolist(), static_result.tolist()):
self.assertAlmostEqual(dygraph_pred, static_pred, delta=1e-5)