This repository was archived by the owner on Feb 7, 2025. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 96
/
Copy pathtest_encoder_modules.py
130 lines (115 loc) · 3.53 KB
/
test_encoder_modules.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
# Copyright (c) MONAI Consortium
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
import unittest
import torch
from parameterized import parameterized
from generative.networks.blocks import SpatialRescaler
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
CASES = [
[
{
"spatial_dims": 2,
"n_stages": 1,
"method": "bilinear",
"multiplier": 0.5,
"in_channels": None,
"out_channels": None,
},
(1, 1, 16, 16),
(1, 1, 8, 8),
],
[
{
"spatial_dims": 2,
"n_stages": 1,
"method": "bilinear",
"multiplier": 0.5,
"in_channels": 3,
"out_channels": 2,
},
(1, 3, 16, 16),
(1, 2, 8, 8),
],
[
{
"spatial_dims": 3,
"n_stages": 1,
"method": "trilinear",
"multiplier": 0.5,
"in_channels": None,
"out_channels": None,
},
(1, 1, 16, 16, 16),
(1, 1, 8, 8, 8),
],
[
{
"spatial_dims": 3,
"n_stages": 1,
"method": "trilinear",
"multiplier": 0.5,
"in_channels": 3,
"out_channels": 2,
},
(1, 3, 16, 16, 16),
(1, 2, 8, 8, 8),
],
[
{
"spatial_dims": 3,
"n_stages": 1,
"method": "trilinear",
"multiplier": (0.25, 0.5, 0.75),
"in_channels": 3,
"out_channels": 2,
},
(1, 3, 20, 20, 20),
(1, 2, 5, 10, 15),
],
[
{"spatial_dims": 2, "n_stages": 1, "size": (8, 8), "method": "bilinear", "in_channels": 3, "out_channels": 2},
(1, 3, 16, 16),
(1, 2, 8, 8),
],
[
{
"spatial_dims": 3,
"n_stages": 1,
"size": (8, 8, 8),
"method": "trilinear",
"in_channels": None,
"out_channels": None,
},
(1, 1, 16, 16, 16),
(1, 1, 8, 8, 8),
],
]
class TestSpatialRescaler(unittest.TestCase):
@parameterized.expand(CASES)
def test_shape(self, input_param, input_shape, expected_shape):
module = SpatialRescaler(**input_param).to(device)
result = module(torch.randn(input_shape).to(device))
self.assertEqual(result.shape, expected_shape)
def test_method_not_in_available_options(self):
with self.assertRaises(AssertionError):
SpatialRescaler(method="none")
def test_n_stages_is_negative(self):
with self.assertRaises(AssertionError):
SpatialRescaler(n_stages=-1)
def test_use_size_but_n_stages_is_not_one(self):
with self.assertRaises(ValueError):
SpatialRescaler(n_stages=2, size=[8, 8, 8])
def test_both_size_and_multiplier_defined(self):
with self.assertRaises(ValueError):
SpatialRescaler(size=[1, 2, 3], multiplier=0.5)
if __name__ == "__main__":
unittest.main()