This repository was archived by the owner on Feb 7, 2025. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 96
/
Copy pathtest_scheduler_ddpm.py
88 lines (71 loc) · 3.8 KB
/
test_scheduler_ddpm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
# Copyright (c) MONAI Consortium
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
import unittest
import torch
from parameterized import parameterized
from generative.networks.schedulers import DDPMScheduler
TEST_2D_CASE = []
for beta_schedule in ["linear_beta", "scaled_linear_beta"]:
for variance_type in ["fixed_small", "fixed_large"]:
TEST_2D_CASE.append(
[{"schedule": beta_schedule, "variance_type": variance_type}, (2, 6, 16, 16), (2, 6, 16, 16)]
)
TEST_3D_CASE = []
for beta_schedule in ["linear_beta", "scaled_linear_beta"]:
for variance_type in ["fixed_small", "fixed_large"]:
TEST_3D_CASE.append(
[{"schedule": beta_schedule, "variance_type": variance_type}, (2, 6, 16, 16, 16), (2, 6, 16, 16, 16)]
)
TEST_CASES = TEST_2D_CASE + TEST_3D_CASE
class TestDDPMScheduler(unittest.TestCase):
@parameterized.expand(TEST_CASES)
def test_add_noise_2d_shape(self, input_param, input_shape, expected_shape):
scheduler = DDPMScheduler(**input_param)
original_sample = torch.zeros(input_shape)
noise = torch.randn_like(original_sample)
timesteps = torch.randint(0, scheduler.num_train_timesteps, (original_sample.shape[0],)).long()
noisy = scheduler.add_noise(original_samples=original_sample, noise=noise, timesteps=timesteps)
self.assertEqual(noisy.shape, expected_shape)
@parameterized.expand(TEST_CASES)
def test_step_shape(self, input_param, input_shape, expected_shape):
scheduler = DDPMScheduler(**input_param)
model_output = torch.randn(input_shape)
sample = torch.randn(input_shape)
output_step = scheduler.step(model_output=model_output, timestep=500, sample=sample)
self.assertEqual(output_step[0].shape, expected_shape)
self.assertEqual(output_step[1].shape, expected_shape)
@parameterized.expand(TEST_CASES)
def test_get_velocity_shape(self, input_param, input_shape, expected_shape):
scheduler = DDPMScheduler(**input_param)
sample = torch.randn(input_shape)
timesteps = torch.randint(0, scheduler.num_train_timesteps, (input_shape[0],)).long()
velocity = scheduler.get_velocity(sample=sample, noise=sample, timesteps=timesteps)
self.assertEqual(velocity.shape, expected_shape)
def test_step_learned(self):
for variance_type in ["learned", "learned_range"]:
scheduler = DDPMScheduler(variance_type=variance_type)
model_output = torch.randn(2, 6, 16, 16)
sample = torch.randn(2, 3, 16, 16)
output_step = scheduler.step(model_output=model_output, timestep=500, sample=sample)
self.assertEqual(output_step[0].shape, sample.shape)
self.assertEqual(output_step[1].shape, sample.shape)
def test_set_timesteps(self):
scheduler = DDPMScheduler(num_train_timesteps=1000)
scheduler.set_timesteps(num_inference_steps=100)
self.assertEqual(scheduler.num_inference_steps, 100)
self.assertEqual(len(scheduler.timesteps), 100)
def test_set_timesteps_with_num_inference_steps_bigger_than_num_train_timesteps(self):
scheduler = DDPMScheduler(num_train_timesteps=1000)
with self.assertRaises(ValueError):
scheduler.set_timesteps(num_inference_steps=2000)
if __name__ == "__main__":
unittest.main()