forked from souravjain540/Basic-Python-Programs
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlinear-regression-without-libraries.py
43 lines (33 loc) · 1.19 KB
/
linear-regression-without-libraries.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import numpy as np
import matplotlib.pyplot as plt
# Sample Data (Height vs. Weight, for example)
# X represents height in cm, Y represents weight in kg
X = np.array([150, 160, 170, 180, 190])
Y = np.array([50, 60, 65, 70, 80])
n = len(X)
# Mean of X and Y
mean_x = np.mean(X)
mean_y = np.mean(Y)
# Calculating the coefficients for Linear Regression
numerator = np.sum((X - mean_x) * (Y - mean_y)) # Σ((Xi - X̄) * (Yi - Ȳ))
denominator = np.sum((X - mean_x) ** 2) # Σ((Xi - X̄)^2)
# Slope (m) and Intercept (b) for y = mx + b
m = numerator / denominator # Slope
b = mean_y - (m * mean_x) # Intercept
print(f"Slope (m): {m}")
print(f"Intercept (b): {b}")
# Prediction using the regression model
def predict(x):
return m * x + b
# Predicted values for X
Y_pred = predict(X)
# Plotting the results
plt.scatter(X, Y, color="blue", label="Data Points") # Plot original data points
plt.plot(X, Y_pred, color="red", label="Regression Line") # Plot regression line
plt.xlabel("Height (cm)")
plt.ylabel("Weight (kg)")
plt.title("Linear Regression Example")
plt.legend()
# Save the plot as an image file
plt.savefig("linear_regression_plot.png")
print("Plot saved as 'linear_regression_plot.png'")