-
-
Notifications
You must be signed in to change notification settings - Fork 143
/
Copy pathtest_rnn.py
executable file
·202 lines (161 loc) · 8.65 KB
/
test_rnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
# -*- coding:utf-8 -*-
__author__ = 'Randolph'
import os
import sys
import time
import logging
import numpy as np
sys.path.append('../')
logging.getLogger('tensorflow').disabled = True
import tensorflow as tf
from utils import checkmate as cm
from utils import data_helpers as dh
from utils import param_parser as parser
from sklearn.metrics import precision_score, recall_score, f1_score, roc_auc_score, average_precision_score
args = parser.parameter_parser()
MODEL = dh.get_model_name()
logger = dh.logger_fn("tflog", "logs/Test-{0}.log".format(time.asctime()))
CPT_DIR = 'runs/' + MODEL + '/checkpoints/'
BEST_CPT_DIR = 'runs/' + MODEL + '/bestcheckpoints/'
SAVE_DIR = 'output/' + MODEL
def create_input_data(data: dict):
return zip(data['pad_seqs'], data['onehot_labels'], data['labels'])
def test_rnn():
"""Test RNN model."""
# Print parameters used for the model
dh.tab_printer(args, logger)
# Load word2vec model
word2idx, embedding_matrix = dh.load_word2vec_matrix(args.word2vec_file)
# Load data
logger.info("Loading data...")
logger.info("Data processing...")
test_data = dh.load_data_and_labels(args, args.test_file, word2idx)
# Load rnn model
OPTION = dh._option(pattern=1)
if OPTION == 'B':
logger.info("Loading best model...")
checkpoint_file = cm.get_best_checkpoint(BEST_CPT_DIR, select_maximum_value=True)
else:
logger.info("Loading latest model...")
checkpoint_file = tf.train.latest_checkpoint(CPT_DIR)
logger.info(checkpoint_file)
graph = tf.Graph()
with graph.as_default():
session_conf = tf.ConfigProto(
allow_soft_placement=args.allow_soft_placement,
log_device_placement=args.log_device_placement)
session_conf.gpu_options.allow_growth = args.gpu_options_allow_growth
sess = tf.Session(config=session_conf)
with sess.as_default():
# Load the saved meta graph and restore variables
saver = tf.train.import_meta_graph("{0}.meta".format(checkpoint_file))
saver.restore(sess, checkpoint_file)
# Get the placeholders from the graph by name
input_x = graph.get_operation_by_name("input_x").outputs[0]
input_y = graph.get_operation_by_name("input_y").outputs[0]
dropout_keep_prob = graph.get_operation_by_name("dropout_keep_prob").outputs[0]
is_training = graph.get_operation_by_name("is_training").outputs[0]
# Tensors we want to evaluate
scores = graph.get_operation_by_name("output/scores").outputs[0]
loss = graph.get_operation_by_name("loss/loss").outputs[0]
# Split the output nodes name by '|' if you have several output nodes
output_node_names = "output/scores"
# Save the .pb model file
output_graph_def = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def,
output_node_names.split("|"))
tf.train.write_graph(output_graph_def, "graph", "graph-rnn-{0}.pb".format(MODEL), as_text=False)
# Generate batches for one epoch
batches = dh.batch_iter(list(create_input_data(test_data)), args.batch_size, 1, shuffle=False)
# Collect the predictions here
test_counter, test_loss = 0, 0.0
test_pre_tk = [0.0] * args.topK
test_rec_tk = [0.0] * args.topK
test_F1_tk = [0.0] * args.topK
# Collect the predictions here
true_labels = []
predicted_labels = []
predicted_scores = []
# Collect for calculating metrics
true_onehot_labels = []
predicted_onehot_scores = []
predicted_onehot_labels_ts = []
predicted_onehot_labels_tk = [[] for _ in range(args.topK)]
for batch_test in batches:
x, y_onehot, y = zip(*batch_test)
feed_dict = {
input_x: x,
input_y: y_onehot,
dropout_keep_prob: 1.0,
is_training: False
}
batch_scores, cur_loss = sess.run([scores, loss], feed_dict)
# Prepare for calculating metrics
for i in y_onehot:
true_onehot_labels.append(i)
for j in batch_scores:
predicted_onehot_scores.append(j)
# Get the predicted labels by threshold
batch_predicted_labels_ts, batch_predicted_scores_ts = \
dh.get_label_threshold(scores=batch_scores, threshold=args.threshold)
# Add results to collection
for i in y:
true_labels.append(i)
for j in batch_predicted_labels_ts:
predicted_labels.append(j)
for k in batch_predicted_scores_ts:
predicted_scores.append(k)
# Get onehot predictions by threshold
batch_predicted_onehot_labels_ts = \
dh.get_onehot_label_threshold(scores=batch_scores, threshold=args.threshold)
for i in batch_predicted_onehot_labels_ts:
predicted_onehot_labels_ts.append(i)
# Get onehot predictions by topK
for top_num in range(args.topK):
batch_predicted_onehot_labels_tk = dh.get_onehot_label_topk(scores=batch_scores, top_num=top_num+1)
for i in batch_predicted_onehot_labels_tk:
predicted_onehot_labels_tk[top_num].append(i)
test_loss = test_loss + cur_loss
test_counter = test_counter + 1
# Calculate Precision & Recall & F1
test_pre_ts = precision_score(y_true=np.array(true_onehot_labels),
y_pred=np.array(predicted_onehot_labels_ts), average='micro')
test_rec_ts = recall_score(y_true=np.array(true_onehot_labels),
y_pred=np.array(predicted_onehot_labels_ts), average='micro')
test_F1_ts = f1_score(y_true=np.array(true_onehot_labels),
y_pred=np.array(predicted_onehot_labels_ts), average='micro')
for top_num in range(args.topK):
test_pre_tk[top_num] = precision_score(y_true=np.array(true_onehot_labels),
y_pred=np.array(predicted_onehot_labels_tk[top_num]),
average='micro')
test_rec_tk[top_num] = recall_score(y_true=np.array(true_onehot_labels),
y_pred=np.array(predicted_onehot_labels_tk[top_num]),
average='micro')
test_F1_tk[top_num] = f1_score(y_true=np.array(true_onehot_labels),
y_pred=np.array(predicted_onehot_labels_tk[top_num]),
average='micro')
# Calculate the average AUC
test_auc = roc_auc_score(y_true=np.array(true_onehot_labels),
y_score=np.array(predicted_onehot_scores), average='micro')
# Calculate the average PR
test_prc = average_precision_score(y_true=np.array(true_onehot_labels),
y_score=np.array(predicted_onehot_scores), average="micro")
test_loss = float(test_loss / test_counter)
logger.info("All Test Dataset: Loss {0:g} | AUC {1:g} | AUPRC {2:g}"
.format(test_loss, test_auc, test_prc))
# Predict by threshold
logger.info("Predict by threshold: Precision {0:g}, Recall {1:g}, F1 {2:g}"
.format(test_pre_ts, test_rec_ts, test_F1_ts))
# Predict by topK
logger.info("Predict by topK:")
for top_num in range(args.topK):
logger.info("Top{0}: Precision {1:g}, Recall {2:g}, F1 {3:g}"
.format(top_num + 1, test_pre_tk[top_num], test_rec_tk[top_num], test_F1_tk[top_num]))
# Save the prediction result
if not os.path.exists(SAVE_DIR):
os.makedirs(SAVE_DIR)
dh.create_prediction_file(output_file=SAVE_DIR + "/predictions.json", data_id=test_data['id'],
true_labels=true_labels, predict_labels=predicted_labels,
predict_scores=predicted_scores)
logger.info("All Done.")
if __name__ == '__main__':
test_rnn()