-
-
Notifications
You must be signed in to change notification settings - Fork 143
/
Copy pathtext_rnn.py
executable file
·242 lines (193 loc) · 10.8 KB
/
text_rnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
# -*- coding:utf-8 -*-
__author__ = 'Randolph'
import numpy as np
import tensorflow as tf
from tensorflow import tanh
from tensorflow import sigmoid
from tensorflow.contrib import rnn
from tensorflow.python.ops import array_ops
from tensorflow.contrib.layers import batch_norm
class BatchNormLSTMCell(rnn.RNNCell):
"""Batch normalized LSTM (cf. http://arxiv.org/abs/1603.09025)"""
def __init__(self, num_units, is_training=False, forget_bias=1.0,
activation=tanh, reuse=None):
"""Initialize the BNLSTM cell.
Args:
num_units: int, The number of units in the BNLSTM cell.
forget_bias: float, The bias added to forget gates (see above).
Must set to `0.0` manually when restoring from CudnnLSTM-trained
checkpoints.
activation: Activation function of the inner states. Default: `tanh`.
reuse: (optional) Python boolean describing whether to reuse variables
in an existing scope. If not `True`, and the existing scope already has
the given variables, an error is raised.
"""
self._num_units = num_units
self._is_training = is_training
self._forget_bias = forget_bias
self._activation = activation
self._reuse = reuse
@property
def state_size(self):
return rnn.LSTMStateTuple(self._num_units, self._num_units)
@property
def output_size(self):
return self._num_units
def __call__(self, inputs, state, scope=None):
with tf.variable_scope(scope or type(self).__name__, reuse=self._reuse):
c, h = state
input_size = inputs.get_shape().as_list()[1]
W_xh = tf.get_variable('W_xh',
[input_size, 4 * self._num_units],
initializer=orthogonal_initializer())
W_hh = tf.get_variable('W_hh',
[self._num_units, 4 * self._num_units],
initializer=bn_lstm_identity_initializer(0.95))
bias = tf.get_variable('bias', [4 * self._num_units])
xh = tf.matmul(inputs, W_xh)
hh = tf.matmul(h, W_hh)
bn_xh = batch_norm(xh, self._is_training)
bn_hh = batch_norm(hh, self._is_training)
hidden = bn_xh + bn_hh + bias
# i = input_gate, j = new_input, f = forget_gate, o = output_gate
i, j, f, o = array_ops.split(value=hidden, num_or_size_splits=4, axis=1)
new_c = (c * sigmoid(f + self._forget_bias) + sigmoid(i) * self._activation(j))
bn_new_c = batch_norm(new_c, 'c', self._is_training)
new_h = self._activation(bn_new_c) * sigmoid(o)
new_state = rnn.LSTMStateTuple(new_c, new_h)
return new_h, new_state
def orthogonal(shape):
flat_shape = (shape[0], np.prod(shape[1:]))
a = np.random.normal(0.0, 1.0, flat_shape)
u, _, v = np.linalg.svd(a, full_matrices=False)
q = u if u.shape == flat_shape else v
return q.reshape(shape)
def bn_lstm_identity_initializer(scale):
def _initializer(shape, dtype=tf.float32, partition_info=None):
"""
Ugly cause LSTM params calculated in one matrix multiply
"""
size = shape[0]
# gate (j) is identity
t = np.zeros(shape)
t[:, size:size * 2] = np.identity(size) * scale
t[:, :size] = orthogonal([size, size])
t[:, size * 2:size * 3] = orthogonal([size, size])
t[:, size * 3:] = orthogonal([size, size])
return tf.constant(t, dtype=dtype)
return _initializer
def orthogonal_initializer():
def _initializer(shape, dtype=tf.float32, partition_info=None):
return tf.constant(orthogonal(shape), dtype)
return _initializer
class TextRNN(object):
"""A RNN for text classification."""
def __init__(
self, sequence_length, vocab_size, embedding_type, embedding_size, lstm_hidden_size,
fc_hidden_size, num_classes, l2_reg_lambda=0.0, pretrained_embedding=None):
# Placeholders for input, output, dropout_prob and training_tag
self.input_x = tf.placeholder(tf.int32, [None, sequence_length], name="input_x")
self.input_y = tf.placeholder(tf.float32, [None, num_classes], name="input_y")
self.dropout_keep_prob = tf.placeholder(tf.float32, name="dropout_keep_prob")
self.is_training = tf.placeholder(tf.bool, name="is_training")
self.global_step = tf.Variable(0, trainable=False, name="Global_Step")
def _linear(input_, output_size, initializer=None, scope="SimpleLinear"):
"""
Linear map: output[k] = sum_i(Matrix[k, i] * args[i] ) + Bias[k].
Args:
input_: a tensor or a list of 2D, batch x n, Tensors.
output_size: int, second dimension of W[i].
initializer: The initializer.
scope: VariableScope for the created subgraph; defaults to "SimpleLinear".
Returns:
A 2D Tensor with shape [batch x output_size] equal to
sum_i(args[i] * W[i]), where W[i]s are newly created matrices.
Raises:
ValueError: if some of the arguments has unspecified or wrong shape.
"""
shape = input_.get_shape().as_list()
if len(shape) != 2:
raise ValueError("Linear is expecting 2D arguments: {0}".format(str(shape)))
if not shape[1]:
raise ValueError("Linear expects shape[1] of arguments: {0}".format(str(shape)))
input_size = shape[1]
# Now the computation.
with tf.variable_scope(scope):
W = tf.get_variable("W", [input_size, output_size], dtype=input_.dtype)
b = tf.get_variable("b", [output_size], dtype=input_.dtype, initializer=initializer)
return tf.nn.xw_plus_b(input_, W, b)
def _highway_layer(input_, size, num_layers=1, bias=-2.0):
"""
Highway Network (cf. http://arxiv.org/abs/1505.00387).
t = sigmoid(Wx + b); h = relu(W'x + b')
z = t * h + (1 - t) * x
where t is transform gate, and (1 - t) is carry gate.
"""
for idx in range(num_layers):
h = tf.nn.relu(_linear(input_, size, scope=("highway_h_{0}".format(idx))))
t = tf.sigmoid(_linear(input_, size, initializer=tf.constant_initializer(bias),
scope=("highway_t_{0}".format(idx))))
output = t * h + (1. - t) * input_
input_ = output
return output
# Embedding Layer
with tf.device("/cpu:0"), tf.name_scope("embedding"):
# Use random generated the word vector by default
# Can also be obtained through our own word vectors trained by our corpus
if pretrained_embedding is None:
self.embedding = tf.Variable(tf.random_uniform([vocab_size, embedding_size], minval=-1.0, maxval=1.0,
dtype=tf.float32), trainable=True, name="embedding")
else:
if embedding_type == 0:
self.embedding = tf.constant(pretrained_embedding, dtype=tf.float32, name="embedding")
if embedding_type == 1:
self.embedding = tf.Variable(pretrained_embedding, trainable=True,
dtype=tf.float32, name="embedding")
self.embedded_sentence = tf.nn.embedding_lookup(self.embedding, self.input_x)
# Bi-LSTM Layer
with tf.name_scope("Bi-lstm"):
lstm_fw_cell = tf.nn.rnn_cell.LSTMCell(lstm_hidden_size) # forward direction cell
lstm_bw_cell = tf.nn.rnn_cell.LSTMCell(lstm_hidden_size) # backward direction cell
if self.dropout_keep_prob is not None:
lstm_fw_cell = tf.nn.rnn_cell.DropoutWrapper(lstm_fw_cell, output_keep_prob=self.dropout_keep_prob)
lstm_bw_cell = tf.nn.rnn_cell.DropoutWrapper(lstm_bw_cell, output_keep_prob=self.dropout_keep_prob)
# Creates a dynamic bidirectional recurrent neural network
# shape of `outputs`: tuple -> (outputs_fw, outputs_bw)
# shape of `outputs_fw`: [batch_size, sequence_length, lstm_hidden_size]
# shape of `state`: tuple -> (outputs_state_fw, output_state_bw)
# shape of `outputs_state_fw`: tuple -> (c, h) c: memory cell; h: hidden state
outputs, state = tf.nn.bidirectional_dynamic_rnn(lstm_fw_cell, lstm_bw_cell,
self.embedded_sentence, dtype=tf.float32)
# Concat output
self.lstm_concat = tf.concat(outputs, axis=2) # [batch_size, sequence_length, lstm_hidden_size * 2]
self.lstm_out = tf.reduce_mean(self.lstm_concat, axis=1) # [batch_size, lstm_hidden_size * 2]
# Fully Connected Layer
with tf.name_scope("fc"):
W = tf.Variable(tf.truncated_normal(shape=[lstm_hidden_size * 2, fc_hidden_size],
stddev=0.1, dtype=tf.float32), name="W")
b = tf.Variable(tf.constant(value=0.1, shape=[fc_hidden_size], dtype=tf.float32), name="b")
self.fc = tf.nn.xw_plus_b(self.lstm_out, W, b)
# Batch Normalization Layer
self.fc_bn = batch_norm(self.fc, is_training=self.is_training, trainable=True, updates_collections=None)
# Apply non-linearity
self.fc_out = tf.nn.relu(self.fc_bn, name="relu")
# Highway Layer
with tf.name_scope("highway"):
self.highway = _highway_layer(self.fc_out, self.fc_out.get_shape()[1], num_layers=1, bias=0)
# Add dropout
with tf.name_scope("dropout"):
self.h_drop = tf.nn.dropout(self.highway, self.dropout_keep_prob)
# Final scores
with tf.name_scope("output"):
W = tf.Variable(tf.truncated_normal(shape=[fc_hidden_size, num_classes],
stddev=0.1, dtype=tf.float32), name="W")
b = tf.Variable(tf.constant(value=0.1, shape=[num_classes], dtype=tf.float32), name="b")
self.logits = tf.nn.xw_plus_b(self.h_drop, W, b, name="logits")
self.scores = tf.sigmoid(self.logits, name="scores")
# Calculate mean cross-entropy loss, L2 loss
with tf.name_scope("loss"):
losses = tf.nn.sigmoid_cross_entropy_with_logits(labels=self.input_y, logits=self.logits)
losses = tf.reduce_mean(tf.reduce_sum(losses, axis=1), name="sigmoid_losses")
l2_losses = tf.add_n([tf.nn.l2_loss(tf.cast(v, tf.float32)) for v in tf.trainable_variables()],
name="l2_losses") * l2_reg_lambda
self.loss = tf.add(losses, l2_losses, name="loss")