-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdatasets.py
441 lines (374 loc) · 19.8 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
import torch
import torch.utils.data
import torchvision.datasets as datasets
import torchvision.transforms as transforms
import torch.utils.data.sampler as Sampler
from lib.Datasets.preprocessing import Preprocessing
import math
import os
import struct
import gzip
import errno
import numpy as np
import xml.etree.ElementTree as ET
class SubsetRandomSamplerWithoutPerm(Sampler.Sampler):
def __init__(self, indices):
self.indices = indices
def __iter__(self):
return (self.indices[i] for i in range(len(self.indices)))
def __len__(self):
return len(self.indices)
class CIFAR10:
"""
CIFAR-10 dataset featuring tiny 32x32 color images of
objects belonging to hundred different classes.
Dataloader adapted from CIFAR10.
Parameters:
args (dict): Dictionary of (command line) arguments.
Needs to contain batch_size (int) and workers(int).
is_gpu (bool): True if CUDA is enabled.
Sets value of pin_memory in DataLoader.
Attributes:
normalize (dict): Contains per-channel means and stds of the dataset.
train_transforms (torchvision.transforms): Composition of transforms
including conversion to Tensor, horizontal flips, random
translations of up to 10% in each direction and normalization.
val_transforms (torchvision.transforms): Composition of transforms
including conversion to Tensor and normalization.
trainset (torch.utils.data.TensorDataset): Training set wrapper.
valset (torch.utils.data.TensorDataset): Validation set wrapper.
train_loader (torch.utils.data.DataLoader): Training set loader with shuffling
val_loader (torch.utils.data.DataLoader): Validation set loader.
"""
def __init__(self, is_gpu, args):
self.normalize = transforms.Normalize(mean=[0.4914, 0.4822, 0.4465],
std=[0.2023, 0.1994, 0.2010])
self.train_transforms, self.val_transforms = self.__get_transforms(args.patch_size)
self.trainset, self.valset = self.get_dataset()
self.train_loader, self.val_loader = self.get_dataset_loader(args.batch_size, args.workers, is_gpu)
# Need to define the class dictionary by hand as the default
# torchvision CIFAR10 data loader does not provide class_to_idx
self.val_loader.dataset.class_to_idx = {'airplane': 0,
'automobile': 1,
'bird': 2,
'cat': 3,
'deer': 4,
'dog': 5,
'frog': 6,
'horse': 7,
'ship': 8,
'truck': 9}
def __get_transforms(self, patch_size):
train_transforms = transforms.Compose([
transforms.Resize(size=(patch_size, patch_size)),
transforms.RandomCrop(patch_size, int(math.ceil(patch_size * 0.1))),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
self.normalize,
])
val_transforms = transforms.Compose([
transforms.Resize(size=(patch_size, patch_size)),
transforms.ToTensor(),
self.normalize,
])
return train_transforms, val_transforms
def get_dataset(self):
"""
Uses torchvision.datasets.CIFAR10 to load dataset.
Downloads dataset if doesn't exist already.
Returns:
torch.utils.data.TensorDataset: trainset, valset
"""
trainset = datasets.CIFAR10('datasets/CIFAR10/train/', train=True, transform=self.train_transforms,
target_transform=None, download=True)
valset = datasets.CIFAR10('datasets/CIFAR10/test/', train=False, transform=self.val_transforms,
target_transform=None, download=True)
return trainset, valset
def get_dataset_loader(self, batch_size, workers, is_gpu):
"""
Defines the dataset loader for wrapped dataset
Parameters:
batch_size (int): Defines the batch size in data loader
workers (int): Number of parallel threads to be used by data loader
is_gpu (bool): True if CUDA is enabled so pin_memory is set to True
Returns:
torch.utils.data.TensorDataset: trainset, valset
"""
train_loader = torch.utils.data.DataLoader(
self.trainset,
batch_size=batch_size, shuffle=True,
num_workers=workers, pin_memory=is_gpu)
val_loader = torch.utils.data.DataLoader(
self.valset,
batch_size=batch_size, shuffle=False,
num_workers=workers, pin_memory=is_gpu)
return train_loader, val_loader
class CIFAR100:
"""
CIFAR-100 dataset featuring tiny 32x32 color images of
objects belonging to hundred different classes.
Dataloader adapted from CIFAR10.
Parameters:
args (dict): Dictionary of (command line) arguments.
Needs to contain batch_size (int) and workers(int).
is_gpu (bool): True if CUDA is enabled.
Sets value of pin_memory in DataLoader.
Attributes:
normalize (dict): Contains per-channel means and stds of the dataset.
train_transforms (torchvision.transforms): Composition of transforms
including conversion to Tensor, horizontal flips, random
translations of up to 10% in each direction and normalization.
val_transforms (torchvision.transforms): Composition of transforms
including conversion to Tensor and normalization.
trainset (torch.utils.data.TensorDataset): Training set wrapper.
valset (torch.utils.data.TensorDataset): Validation set wrapper.
train_loader (torch.utils.data.DataLoader): Training set loader with shuffling.
val_loader (torch.utils.data.DataLoader): Validation set loader.
"""
def __init__(self, is_gpu, args):
self.normalize = transforms.Normalize(mean=[0.5071, 0.4866, 0.4409],
std=[0.2009, 0.1984, 0.2023])
self.train_transforms, self.val_transforms = self.__get_transforms(args.patch_size)
self.trainset, self.valset = self.get_dataset()
self.train_loader, self.val_loader = self.get_dataset_loader(args.batch_size, args.workers, is_gpu)
# Need to define the class dictionary by hand as the default
# torchvision CIFAR100 data loader does not provide class_to_idx
self.val_loader.dataset.class_to_idx = {'apples': 0,
'aquariumfish': 1,
'baby': 2,
'bear': 3,
'beaver': 4,
'bed': 5,
'bee': 6,
'beetle': 7,
'bicycle': 8,
'bottles': 9,
'bowls': 10,
'boy': 11,
'bridge': 12,
'bus': 13,
'butterfly': 14,
'camel': 15,
'cans': 16,
'castle': 17,
'caterpillar': 18,
'cattle': 19,
'chair': 20,
'chimpanzee': 21,
'clock': 22,
'cloud': 23,
'cockroach': 24,
'computerkeyboard': 25,
'couch': 26,
'crab': 27,
'crocodile': 28,
'cups': 29,
'dinosaur': 30,
'dolphin': 31,
'elephant': 32,
'flatfish': 33,
'forest': 34,
'fox': 35,
'girl': 36,
'hamster': 37,
'house': 38,
'kangaroo': 39,
'lamp': 40,
'lawnmower': 41,
'leopard': 42,
'lion': 43,
'lizard': 44,
'lobster': 45,
'man': 46,
'maple': 47,
'motorcycle': 48,
'mountain': 49,
'mouse': 50,
'mushrooms': 51,
'oak': 52,
'oranges': 53,
'orchids': 54,
'otter': 55,
'palm': 56,
'pears': 57,
'pickuptruck': 58,
'pine': 59,
'plain': 60,
'plates': 61,
'poppies': 62,
'porcupine': 63,
'possum': 64,
'rabbit': 65,
'raccoon': 66,
'ray': 67,
'road': 68,
'rocket': 69,
'roses': 70,
'sea': 71,
'seal': 72,
'shark': 73,
'shrew': 74,
'skunk': 75,
'skyscraper': 76,
'snail': 77,
'snake': 78,
'spider': 79,
'squirrel': 80,
'streetcar': 81,
'sunflowers': 82,
'sweetpeppers': 83,
'table': 84,
'tank': 85,
'telephone': 86,
'television': 87,
'tiger': 88,
'tractor': 89,
'train': 90,
'trout': 91,
'tulips': 92,
'turtle': 93,
'wardrobe': 94,
'whale': 95,
'willow': 96,
'wolf': 97,
'woman': 98,
'worm': 99}
def __get_transforms(self, patch_size):
train_transforms = transforms.Compose([
transforms.Resize(size=(patch_size, patch_size)),
transforms.RandomCrop(patch_size, int(math.ceil(patch_size * 0.1))),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
self.normalize,
])
val_transforms = transforms.Compose([
transforms.Resize(size=(patch_size, patch_size)),
transforms.ToTensor(),
self.normalize,
])
return train_transforms, val_transforms
def get_dataset(self):
"""
Uses torchvision.datasets.CIFAR100 to load dataset.
Downloads dataset if doesn't exist already.
Returns:
torch.utils.data.TensorDataset: trainset, valset
"""
trainset = datasets.CIFAR100('datasets/CIFAR100/train/', train=True, transform=self.train_transforms,
target_transform=None, download=True)
valset = datasets.CIFAR100('datasets/CIFAR100/test/', train=False, transform=self.val_transforms,
target_transform=None, download=True)
return trainset, valset
def get_dataset_loader(self, batch_size, workers, is_gpu):
"""
Defines the dataset loader for wrapped dataset
Parameters:
batch_size (int): Defines the batch size in data loader
workers (int): Number of parallel threads to be used by data loader
is_gpu (bool): True if CUDA is enabled so pin_memory is set to True
Returns:
torch.utils.data.TensorDataset: trainset, valset
"""
# TODO: dirty hack to get things working, class local to the get_dataset_loader to dump the indices to a local variable
train_loader = torch.utils.data.DataLoader(
self.trainset,
batch_size=batch_size, shuffle=True,
num_workers=workers, pin_memory=is_gpu)
val_loader = torch.utils.data.DataLoader(
self.valset,
batch_size=batch_size, shuffle=False,
num_workers=workers, pin_memory=is_gpu)
return train_loader, val_loader
class MNIST:
"""
MNIST dataset featuring gray-scale 28x28 images of
hand-written characters belonging to ten different classes.
Dataset implemented with torchvision.datasets.MNIST.
Parameters:
args (dict): Dictionary of (command line) arguments.
Needs to contain batch_size (int) and workers(int).
is_gpu (bool): True if CUDA is enabled.
Sets value of pin_memory in DataLoader.
Attributes:
normalize (dict): Contains per-channel means and stds of the dataset.
train_transforms (torchvision.transforms): Composition of transforms
including conversion to Tensor, repeating gray-scale image to
three channel for consistent use with different architectures
and normalization.
val_transforms (torchvision.transforms): Composition of transforms
including conversion to Tensor, repeating gray-scale image to
three channel for consistent use with different architectures
and normalization.
trainset (torch.utils.data.TensorDataset): Training set wrapper.
valset (torch.utils.data.TensorDataset): Validation set wrapper.
train_loader (torch.utils.data.DataLoader): Training set loader with shuffling.
val_loader (torch.utils.data.DataLoader): Validation set loader.
"""
def __init__(self, is_gpu, args):
self.normalize = transforms.Normalize(mean=[0.1307, 0.1307, 0.1307],
std=[0.3081, 0.3081, 0.3081])
self.train_transforms, self.val_transforms = self.__get_transforms(args.patch_size)
self.trainset, self.valset = self.get_dataset()
self.train_loader, self.val_loader = self.get_dataset_loader(args.batch_size, args.workers, is_gpu)
# Need to define the class dictionary by hand as the default
# torchvision MNIST data loader does not provide class_to_idx
self.val_loader.dataset.class_to_idx = {'0': 0,
'1': 1,
'2': 2,
'3': 3,
'4': 4,
'5': 5,
'6': 6,
'7': 7,
'8': 8,
'9': 9}
def __get_transforms(self, patch_size):
# scale the images (e.g. to 32x32, so the same model
# as for CIFAR10 can be used for comparison
# for analogous reasons we also define a lambda transform
# to duplicate the gray-scale image to 3 channels
train_transforms = transforms.Compose([
transforms.Resize(size=(patch_size, patch_size)),
transforms.ToTensor(),
transforms.Lambda(lambda x: x.repeat(3, 1, 1)),
self.normalize,
])
val_transforms = transforms.Compose([
transforms.Resize(size=(patch_size, patch_size)),
transforms.ToTensor(),
transforms.Lambda(lambda x: x.repeat(3, 1, 1)),
self.normalize,
])
return train_transforms, val_transforms
def get_dataset(self):
"""
Uses torchvision.datasets.MNIST to load dataset.
Downloads dataset if doesn't exist already.
Returns:
torch.utils.data.TensorDataset: trainset, valset
"""
trainset = datasets.MNIST('datasets/MNIST/train/', train=True, transform=self.train_transforms,
target_transform=None, download=True)
valset = datasets.MNIST('datasets/MNIST/test/', train=False, transform=self.val_transforms,
target_transform=None, download=True)
return trainset, valset
def get_dataset_loader(self, batch_size, workers, is_gpu):
"""
Defines the dataset loader for wrapped dataset
Parameters:
batch_size (int): Defines the batch size in data loader
workers (int): Number of parallel threads to be used by data loader
is_gpu (bool): True if CUDA is enabled so pin_memory is set to True
Returns:
torch.utils.data.TensorDataset: trainset, valset
"""
# TODO: dirty hack to get things working, class local to the get_dataset_loader to dump the indices to a local variable
train_loader = torch.utils.data.DataLoader(
self.trainset,
batch_size=batch_size, shuffle=True,
num_workers=workers, pin_memory=is_gpu)
val_loader = torch.utils.data.DataLoader(
self.valset,
batch_size=batch_size, shuffle=False,
num_workers=workers, pin_memory=is_gpu)
return train_loader, val_loader