-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpreprocessing.py
32 lines (27 loc) · 1.15 KB
/
preprocessing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
# -*- coding: utf-8 -*-
import torch
import torchvision.transforms as transforms
import torchvision.datasets as datasets
class Preprocessing(object):
# TODO: currently only GCN
"""Compute the mean and std value of dataset."""
def __init__(self):
self.reset()
def reset(self):
self.mean = torch.zeros(3)
self.var = torch.zeros(3)
self.std = torch.zeros(3)
def get_mean_and_std(self, datasetdir, nworkers):
dataset = datasets.ImageFolder(datasetdir, transforms.Compose([transforms.ToTensor()]))
dataloader = torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=True, num_workers= nworkers)
print('==> Computing mean and std..')
for inputs, targets in dataloader:
for i in range(3):
# note that PyTorch always has a dummy batch dimension
self.mean[i] += inputs[:,i,:,:].mean()
self.var[i] += inputs[:,i,:,:].var()
self.mean.div_(len(dataset))
self.var.div_(len(dataset))
self.std = torch.sqrt(self.var)
print("dataset mean: ", self.mean)
print("dataset std: ", self.std)