-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathplotReplayDictRollingMean.py
44 lines (41 loc) · 1.73 KB
/
plotReplayDictRollingMean.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import argparse
parser = argparse.ArgumentParser(description='plotting rolling mean from replay dict from MetaQNN')
parser.add_argument('--csv', metavar='CSV', default='./runs/replayDictFinal.csv' ,
help='path to csv sorted according to epsilon in descending\
order to plot rolling mean from')
parser.add_argument('-rc', '--reward-col', metavar='RC', default='reward',\
help='column name to take rewards from')
parser.add_argument('-rmw', '--rolling-mean-window', metavar='RMW', type=int, default=None,\
help='window size to calculate the rolling mean')
def plotRollingMean(args):
df_replayDict = pd.read_csv(args.csv)
epsilon_replayDict = df_replayDict['epsilon'].tolist()
reward_replayDict = df_replayDict[args.reward_col].tolist()
rollingMeanReward_replayDict = list()
if args.rolling_mean_window is None:
for i in range(0,len(reward_replayDict)):
rollingMeanReward_replayDict.append(np.mean(np.array(reward_replayDict[0:i+1])))
else:
for i in range(int(args.rolling_mean_window),len(reward_replayDict)):
rollingMeanReward_replayDict.append(np.mean(\
np.array(reward_replayDict[i-int(args.rolling_mean_window):i+1])))
fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(rollingMeanReward_replayDict)
# TODO: add ticks and markers
"""
ax.plot(reward_replayDict)
x_ticks = np.append(ax.get_xticks(),[33,41,50,59,66,79,91,102,112,118])
x = np.arange(1,len(reward_replayDict)+1)
plt.xticks(x,epsilon_replayDict)
ax.set_xticks(x_ticks)
plt.plot(x,rollingMeanReward_replayDict)
"""
plt.ylabel(args.reward_col)
plt.show()
if __name__ == "__main__":
args = parser.parse_args()
plotRollingMean(args)