-
Notifications
You must be signed in to change notification settings - Fork 835
/
Copy pathutils.py
53 lines (45 loc) · 1.65 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import logging
import os
import tempfile
from typing import Dict, Iterable, List, Union
import joblib
import numpy as np
JOBLIB_FILE = "model.joblib"
logger = logging.getLogger(__name__)
def download_from_gs(gs_uri: str, dirname: str) -> None:
os.system(f"gsutil cp -r {gs_uri} {dirname}")
class SKLearnServer:
def __init__(self, model_uri: str = None, method: str = "predict_proba"):
super().__init__()
self.model_uri = model_uri
self.method = method
self.ready = False
logger.info(f"Model uri: {self.model_uri}")
logger.info(f"method: {self.method}")
self.load()
def load(self):
logger.info("load")
with tempfile.TemporaryDirectory() as model_dir:
download_from_gs(self.model_uri, model_dir)
model_file = os.path.join(model_dir, JOBLIB_FILE)
logger.info(f"model file: {model_file}")
self._joblib = joblib.load(model_file)
self.ready = True
def predict(self, X: np.ndarray) -> Union[np.ndarray, List, str, bytes]:
if not isinstance(X, np.ndarray):
if isinstance(X, list):
X = np.array(X)
else:
X = np.array([X])
try:
if not self.ready:
self.load()
if self.method == "predict_proba":
logger.info("Calling predict_proba")
result = self._joblib.predict_proba(X)
else:
logger.info("Calling predict")
result = self._joblib.predict(X)
return result
except Exception as ex:
logging.exception("Exception during predict")