-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsiamese_fr.py
249 lines (173 loc) · 7.38 KB
/
siamese_fr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import numpy as np
import cv2
import os
import tensorflow as tf
from keras.models import Model
from keras.layers import Layer, Dense, Conv2D, MaxPool2D, Flatten, Input
import uuid
from keras.metrics import Precision, Recall
# link to the dataset: http://vis-www.cs.umass.edu/lfw/
# link to the paper: https://www.cs.cmu.edu/~rsalakhu/papers/oneshot1.pdf
POS_PATH = os.path.join('data','positive')
NEG_PATH = os.path.join('data','negative')
ANC_PATH = os.path.join('data','anchor')
def make_dir(path):
if not os.path.exists(path):
os.makedirs(path)
# make_dir(POS_PATH)
# make_dir(NEG_PATH)
# make_dir(ANC_PATH)
def transfer_image():
for sub_dir in os.listdir('lfw'):
for image in os.listdir(os.path.join('lfw',sub_dir)):
current_path = os.path.join('lfw',sub_dir,image)
destination_path = os.path.join(NEG_PATH,image)
os.replace(current_path, destination_path)
# transfer_image()
def data_collector(ANC_PATH, POS_PATH, name):
'''
collecting the image data for anchor and postive class using a webcam.
'''
cap = cv2.VideoCapture(0)
print('dfa')
while cap.isOpened():
ret, frame = cap.read()
frame = frame[120:120+250, 200:200+250, :]
cv2.imshow('image data collection', frame) #displaying the image
if cv2.waitKey(1) & 0XFF == ord('a'):
print('collecting the images for anchor class')
path = os.path.join(ANC_PATH, f'{name}_{uuid.uuid1()}.jpg' )
cv2.imwrite(path, frame)
if cv2.waitKey(1) & 0XFF == ord('p'):
print('Collecting the image for positive class')
path = os.path.join(POS_PATH, f'{name}_{uuid.uuid1()}.jpg')
cv2.imwrite(path, frame)
if cv2.waitKey(1) & 0XFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
# data_collector(ANC_PATH, POS_PATH, 'shreejan')
#taking 60 images of each class
anchor = tf.data.Dataset.list_files(ANC_PATH + '/*.jpg').take(60)
positive = tf.data.Dataset.list_files(POS_PATH + '/*.jpg').take(60)
negative = tf.data.Dataset.list_files(NEG_PATH +'/*.jpg').take(60)
# generator_ = anchor.as_numpy_iterator()
# print(generator_.next())
def image_preprocess(img_path):
'''
reading the image and resizing it to (105,105).
(105,105) is the recommended size in the paper.
'''
image = tf.io.read_file(img_path)
img = tf.io.decode_jpeg(image)
#scaling (normalizing) the image to 0-1 pixel value
img = tf.image.resize(img, (100,100))
img = img/255.0
return img
#labeling the image, i.e. (anchor, positive == 1) $ (anchor, negative ==0)
positives = tf.data.Dataset.zip((anchor, positive, tf.data.Dataset.from_tensor_slices(tf.ones(len(anchor)))))
negatives = tf.data.Dataset.zip((anchor, negative, tf.data.Dataset.from_tensor_slices(tf.zeros(len(anchor)))))
data = positives.concatenate(negatives) #this contains the data in the form of generator
# samples = data.as_numpy_iterator()
# print(samples.next())
def preprocess_twin(input_img, validation_img, label):
return (image_preprocess(input_img), image_preprocess(validation_img), label)
data = data.map(preprocess_twin)
data = data.cache()
data = data.shuffle(buffer_size=60)
#training partition
train_data = data.take(round(len(data)*.7))
train_data = train_data.batch(16)
train_data = train_data.prefetch(8)
train_samples = train_data.as_numpy_iterator()
train_sample = train_samples.next()
# print(len(train_sample[0]))
#testing partition
test_data = data.skip(round(len(data)*.7))
test_data = test_data.take(round(len(data)*.3))
test_data = test_data.batch(16)
test_data = test_data.prefetch(8)
def make_embeddings():
inp = Input(shape=(100,100,3), name='input_image')
c1 = Conv2D(64, (10,10), activation='relu')(inp)
m1 = MaxPool2D(64, (2,2), padding='same')(c1)
c2 = Conv2D(64, (7,7), activation='relu')(m1) #originally there was 128 filters
m2 = MaxPool2D(64, (2,2), padding='same')(c2)
c3 = Conv2D(64, (4,4), activation='relu')(m2) #originally there was 128 filters
m3 = MaxPool2D(64, (2,2), padding='same')(c3)
c4 = Conv2D(128, (4,4), activation='relu')(m3) #originally there was 255 filters
f1 = Flatten()(c4)
d1 = Dense(4096, activation='sigmoid',)(f1)
return Model(inputs=[inp], outputs=[d1], name='embedding')
embedding = make_embeddings()
# embedding.summary()
class L1Dist(Layer):
def __init__(self, **kwargs):
super().__init__()
def call(self, input_embedding, validation_embedding):
return tf.math.abs(input_embedding - validation_embedding)
def make_siamese_network():
input_image = Input(shape=(100,100,3), name='input_img')
validation_image = Input(shape=(100,100,3), name='validation_img')
siamese_layer = L1Dist()
siamese_layer._name = 'distance'
distances = siamese_layer(embedding(input_image),embedding(validation_image))
classifier = Dense(1, activation='sigmoid')(distances)
return Model(inputs=[input_image, validation_image], outputs=[classifier], name='SiameseNetwork')
# m = make_siamese_network()
# print(m.summary)
binary_cross_loss = tf.losses.BinaryCrossentropy() #from_logit = True
opt = tf.keras.optimizers.Adam(1e-4)
# establishing the checkpoint
siamese_model = make_siamese_network()
checkpoint_dir = './training_checkpoints'
checkpoint_prefix = os.path.join(checkpoint_dir, 'ckpt')
checkpoint = tf.train.Checkpoint(opt=opt, siamese_model=siamese_model)
@tf.function
def train_step(batch):
with tf.GradientTape() as tape:
#x has anchor and positive or negative image
X = batch[:2]
#y has the label
y = batch[2]
#forward pass
#training = True research
yhat = siamese_model(X, training=True)
#calculate loss
loss = binary_cross_loss(y, yhat)
#calculate gradients
grad = tape.gradient(loss, siamese_model.trainable_variables)
#calculate updated weights and apply to siamese model
opt.apply_gradients(zip(grad, siamese_model.trainable_variables))
return loss
def train(data, EPOCHS):
#loop through epochs
for epoch in range(1, EPOCHS+1):
print('\n Epoch {}/{}'.format(epoch, EPOCHS))
progbar = tf.keras.utils.Progbar(len(data))
#loop through each batch
for idx, batch in enumerate(data):
train_step(batch)
progbar.update(idx+1)
#save checkpoints
if epoch % 10 == 0:
checkpoint.save(file_prefix=checkpoint_prefix)
EPOCHS = 15
# train(train_data, EPOCHS)
#get a btach of test data
test_input, test_val, y_true = test_data.as_numpy_iterator().next()
test_var = test_data.as_numpy_iterator().next()
y_hat = siamese_model.predict([test_input, test_val])
print(y_hat)
predicted_value = [1 if prediction > 0.5 else 0 for prediction in y_hat]
#creating a matric object
m = Recall()
#calculating the recall value
m.update_state(y_true, y_hat)
#return recall result
m.result().numpy()
#save model
siamese_model.save('siamesemodel.h5')
model = tf.keras.models.load_model('siamesemodel.h5', custom_objects={'L1Dist':L1Dist})
#if we want to predict the using our custom build model
#model.predict([test_input, test_val])