-
Notifications
You must be signed in to change notification settings - Fork 82
/
Copy pathMin Steps to One
58 lines (48 loc) · 1.4 KB
/
Min Steps to One
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
/*
Given a positive integer 'n', find and return the minimum number of steps that 'n' has to take to get reduced to 1. You can perform any one of the following 3 steps:
1.) Subtract 1 from it. (n = n - 1) ,
2.) If its divisible by 2, divide by 2.( if n % 2 == 0, then n = n / 2 ) ,
3.) If its divisible by 3, divide by 3. (if n % 3 == 0, then n = n / 3 ).
Write brute-force recursive solution for this.
Input format :
The first and the only line of input contains an integer value, 'n'.
Output format :
Print the minimum number of steps.
Constraints :
1 <= n <= 200
Time Limit: 1 sec
Sample Input 1 :
4
Sample Output 1 :
2
Explanation of Sample Output 1 :
For n = 4
Step 1 : n = 4 / 2 = 2
Step 2 : n = 2 / 2 = 1
Sample Input 2 :
7
Sample Output 2 :
3
Explanation of Sample Output 2 :
For n = 7
Step 1 : n = 7 - 1 = 6
Step 2 : n = 6 / 3 = 2
Step 3 : n = 2 / 2 = 1
*/
public class Solution {
public static int countMinStepsToOne(int n) {
//Your code goes here
if (n<=1)
return 0;
else if (n==2 || n==3)
return 1;
int output1=countMinStepsToOne(n-1);
int output2=Integer.MAX_VALUE;
int output3=Integer.MAX_VALUE;
if (n%2==0)
output2=countMinStepsToOne(n/2);
if (n%3==0)
output3=countMinStepsToOne(n/3);
return Math.min(Math.min(output2,output3),output1)+1;
}
}