-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathutils.py
198 lines (163 loc) · 6.87 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
# --------------------------------------------------------
# Swin Transformer
# Copyright (c) 2021 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by Ze Liu
# --------------------------------------------------------
# Adapted for AutoFocusFormer by Ziwen 2023
import builtins
import datetime
import os
import torch
import numpy as np
import random
import torch.distributed as dist
def load_checkpoint(config, model, optimizer, lr_scheduler, loss_scaler, logger, use_ema=False):
logger.info(f"==============> Resuming form {config.MODEL.RESUME}....................")
if config.MODEL.RESUME.startswith('https'):
checkpoint = torch.hub.load_state_dict_from_url(
config.MODEL.RESUME, map_location='cpu', check_hash=True)
else:
checkpoint = torch.load(config.MODEL.RESUME, map_location='cpu')
if use_ema:
msg = model.load_state_dict(checkpoint['model_ema'], strict=False)
logger.info(msg)
del checkpoint
torch.cuda.empty_cache()
return
msg = model.load_state_dict(checkpoint['model'], strict=False)
logger.info(msg)
max_accuracy = 0.0
if not config.EVAL_MODE and 'optimizer' in checkpoint and 'lr_scheduler' in checkpoint and 'epoch' in checkpoint:
optimizer.load_state_dict(checkpoint['optimizer'])
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
loss_scaler.load_state_dict(checkpoint['loss_scaler'])
config.defrost()
config.TRAIN.START_EPOCH = checkpoint['epoch'] + 1
config.freeze()
logger.info(f"=> loaded successfully '{config.MODEL.RESUME}' (epoch {checkpoint['epoch']})")
if 'max_accuracy' in checkpoint:
max_accuracy = checkpoint['max_accuracy']
if 'rng' in checkpoint:
np.random.set_state(checkpoint['np_rng'])
torch.set_rng_state(checkpoint['rng'])
torch.random.set_rng_state(checkpoint['random'])
random.setstate(checkpoint['prng'])
del checkpoint
torch.cuda.empty_cache()
return max_accuracy
def save_checkpoint(config, epoch, model, max_accuracy, optimizer, lr_scheduler, loss_scaler, logger, model_ema=None, total_epochs=None):
if total_epochs is None:
total_epochs = config.TRAIN.EPOCHS
save_state = {'model': model.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'loss_scaler': loss_scaler.state_dict(),
'max_accuracy': max_accuracy,
'epoch': epoch,
'rng': torch.get_rng_state(),
'random': torch.random.get_rng_state(),
'np_rng': np.random.get_state(),
'prng': random.getstate()}
if model_ema is not None:
save_state['model_ema'] = model_ema.state_dict()
save_path = os.path.join(config.OUTPUT, 'ckpt_epoch.pth')
logger.info(f"{save_path} saving......")
torch.save(save_state, save_path)
logger.info(f"{save_path} saved !!!")
if ((epoch+1) % config.SAVE_FREQ == 0 or epoch == (total_epochs - 1) or epoch == 0):
save_path = os.path.join(config.OUTPUT, f'ckpt_epoch_{epoch}.pth')
torch.save(save_state, save_path)
def get_grad_norm(parameters, norm_type=2):
if isinstance(parameters, torch.Tensor):
parameters = [parameters]
parameters = list(filter(lambda p: p.grad is not None, parameters))
norm_type = float(norm_type)
total_norm = 0
for p in parameters:
param_norm = p.grad.data.norm(norm_type)
total_norm += param_norm.item() ** norm_type
total_norm = total_norm ** (1. / norm_type)
return total_norm
def auto_resume_helper(output_dir):
checkpoints = os.listdir(output_dir)
checkpoints = [ckpt for ckpt in checkpoints if ckpt.endswith('pth')]
print(f"All checkpoints founded in {output_dir}: {checkpoints}")
if len(checkpoints) > 0:
latest_checkpoint = max([os.path.join(output_dir, d) for d in checkpoints], key=os.path.getmtime)
print(f"The latest checkpoint founded: {latest_checkpoint}")
resume_file = latest_checkpoint
else:
resume_file = None
return resume_file
def get_rank():
if not is_dist_avail_and_initialized():
return 0
return dist.get_rank()
def get_local_rank():
if not is_dist_avail_and_initialized():
return 0
return dist.get_rank()
def get_world_size():
if not is_dist_avail_and_initialized():
return 1
return dist.get_world_size()
def reduce_tensor(tensor):
rt = tensor.clone()
dist.all_reduce(rt, op=dist.ReduceOp.SUM)
rt /= dist.get_world_size()
return rt
def init_distributed_mode():
if 'RANK' in os.environ and 'WORLD_SIZE' in os.environ:
rank = int(os.environ["RANK"])
world_size = int(os.environ['WORLD_SIZE'])
print(f"RANK and WORLD_SIZE in environ: {rank}/{world_size}")
else:
rank = -1
world_size = -1
torch.cuda.set_device(rank)
torch.distributed.init_process_group(backend='nccl', init_method='env://', world_size=world_size, rank=rank)
torch.distributed.barrier()
def setup_for_distributed(is_master):
"""
This function disables printing when not in master process
"""
builtin_print = builtins.print
def print(*args, **kwargs):
force = kwargs.pop('force', False)
force = force or (get_world_size() > 8)
if is_master or force:
now = datetime.datetime.now().time()
builtin_print('[{}] '.format(now), end='') # print with time stamp
builtin_print(*args, **kwargs)
builtins.print = print
def is_dist_avail_and_initialized():
if not dist.is_available():
return False
if not dist.is_initialized():
return False
return True
class NativeScalerWithGradNormCount:
def __init__(self, config):
self._scaler = torch.cuda.amp.GradScaler(enabled=config.AMP_ENABLE)
def __call__(self, loss, optimizer, clip_grad=None, parameters=None, create_graph=False, update_grad=True):
self._scaler.scale(loss).backward(create_graph=create_graph)
if update_grad:
if clip_grad is not None:
assert parameters is not None
self._scaler.unscale_(optimizer) # unscale the gradients of optimizer's assigned params in-place
norm = torch.nn.utils.clip_grad_norm_(parameters, clip_grad, error_if_nonfinite=False)
else:
self._scaler.unscale_(optimizer)
norm = ampscaler_get_grad_norm(parameters)
self._scaler.step(optimizer)
self._scaler.update()
else:
norm = None
return norm
def state_dict(self):
return self._scaler.state_dict()
def load_state_dict(self, state_dict):
self._scaler.load_state_dict(state_dict)
def is_enabled(self):
return self._scaler.is_enabled()