-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodels.py
160 lines (139 loc) · 6.46 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import torch
import torch.nn as nn
import torch.nn.functional as F
class Chomp1d(nn.Module):
def __init__(self, chomp_size):
super(Chomp1d, self).__init__()
self.chomp_size = chomp_size
def forward(self, x):
return x[:, :, :-self.chomp_size].contiguous()
class TemporalBlock(nn.Module):
def __init__(self, n_inputs, n_outputs, kernel_size, stride, dilation, padding, dropout=0.2):
super(TemporalBlock, self).__init__()
self.conv1 = nn.Conv1d(n_inputs, n_outputs, kernel_size,
stride=stride, padding=padding, dilation=dilation)
self.chomp1 = Chomp1d(padding)
self.relu1 = nn.ReLU()
self.dropout1 = nn.Dropout(dropout)
self.conv2 = nn.Conv1d(n_outputs, n_outputs, kernel_size,
stride=stride, padding=padding, dilation=dilation)
self.chomp2 = Chomp1d(padding)
self.relu2 = nn.ReLU()
self.dropout2 = nn.Dropout(dropout)
self.net = nn.Sequential(self.conv1, self.chomp1, self.relu1, self.dropout1,
self.conv2, self.chomp2, self.relu2, self.dropout2)
self.downsample = nn.Conv1d(
n_inputs, n_outputs, 1) if n_inputs != n_outputs else None
self.relu = nn.ReLU()
# self.init_weights()
def init_weights(self):
self.conv1.weight.data.normal_(0, 0.01)
self.conv2.weight.data.normal_(0, 0.01)
if self.downsample is not None:
self.downsample.weight.data.normal_(0, 0.01)
def forward(self, x):
out = self.net(x)
res = x if self.downsample is None else self.downsample(x)
return self.relu(out + res)
class TemporalConvNet(nn.Module):
def __init__(self, num_inputs, num_channels, kernel_size=2, dropout=0.2):
super(TemporalConvNet, self).__init__()
layers = []
num_levels = len(num_channels)
for i in range(num_levels):
dilation_size = 2 ** i
in_channels = num_inputs if i == 0 else num_channels[i-1]
out_channels = num_channels[i]
layers += [TemporalBlock(in_channels, out_channels, kernel_size, stride=1, dilation=dilation_size,
padding=(kernel_size-1) * dilation_size, dropout=dropout)]
self.network = nn.Sequential(*layers)
def forward(self, x):
return self.network(x)
class TextTCN(nn.Module):
def __init__(self, vocab_size, embedding_dim, hidden_dim, num_layers, kernel_size, num_classes, d_prob, mode, weights=None):
super(TextTCN, self).__init__()
self.vocab_size = vocab_size
self.embedding_dim = embedding_dim
self.hidden_dim = hidden_dim
self.num_layers = num_layers
self.kernel_size = kernel_size
self.num_classes = num_classes
self.d_prob = d_prob
self.mode = mode
self.embedding = nn.Embedding(vocab_size, embedding_dim, padding_idx=1)
if weights is not None:
self.load_embeddings(weights)
self.tcn = TemporalConvNet(num_inputs=embedding_dim,
num_channels=[hidden_dim] * num_layers,
kernel_size=kernel_size,
dropout=d_prob)
self.dropout = nn.Dropout(d_prob)
self.fc = nn.Linear(hidden_dim, num_classes)
self.activation = nn.Sigmoid() if num_classes == 1 else nn.LogSoftmax(dim=1)
def forward(self, x):
x = self.embedding(x.transpose(1, 0)).transpose(1, 2)
x = self.tcn(x)
x = F.adaptive_avg_pool1d(x, 1).squeeze(dim=-1) # global avg pool
x = self.fc(self.dropout(x))
return self.activation(x).squeeze()
def load_embeddings(self, weights):
if 'static' in self.mode:
self.embedding.weight.data.copy_(weights)
if 'non' not in self.mode:
self.embedding.weight.data.requires_grad = False
print('Loaded pretrained embeddings, weights are not trainable.')
else:
self.embedding.weight.data.requires_grad = True
print('Loaded pretrained embeddings, weights are trainable.')
elif self.mode == 'rand':
print('Randomly initialized embeddings are used.')
else:
raise ValueError(
'Unexpected value of mode. Please choose from static, nonstatic, rand.')
class TextLSTM(nn.Module):
def __init__(self, vocab_size, embedding_dim, hidden_dim, num_layers, num_classes, d_prob, mode, weights=None):
super(TextLSTM, self).__init__()
self.vocab_size = vocab_size
self.embedding_dim = embedding_dim
self.hidden_dim = hidden_dim
self.num_layers = num_layers
self.num_classes = num_classes
self.d_prob = d_prob
self.mode = mode
self.embedding = nn.Embedding(vocab_size, embedding_dim, padding_idx=1)
if weights is not None:
self.load_embeddings(weights)
self.lstm = nn.LSTM(input_size=embedding_dim,
hidden_size=hidden_dim,
num_layers=num_layers,
dropout=d_prob,
bias=True)
self.num_directions = 1
self.dropout = nn.Dropout(d_prob)
self.fc = nn.Linear(hidden_dim*self.num_directions, num_classes)
self.activation = nn.Sigmoid() if num_classes == 1 else nn.LogSoftmax(dim=1)
def forward(self, x):
_, batch_size = x.shape
x = self.embedding(x)
_, (x, _) = self.lstm(x)
x = x.view(-1,
self.num_directions,
batch_size,
self.hidden_dim)
x = x[-1][-1] # final hidden state
x = self.fc(self.dropout(x.squeeze()))
return self.activation(x).squeeze()
def load_embeddings(self, weights):
if 'static' in self.mode:
self.embedding.weight.data.copy_(weights)
if 'non' not in self.mode:
self.embedding.weight.data.requires_grad = False
print('Loaded pretrained embeddings, weights are not trainable.')
else:
self.embedding.weight.data.requires_grad = True
print('Loaded pretrained embeddings, weights are trainable.')
elif self.mode == 'rand':
print('Randomly initialized embeddings are used.')
else:
raise ValueError(
'Unexpected value of mode. Please choose from static, nonstatic, rand.')