-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset_creation.py
283 lines (241 loc) · 14.3 KB
/
dataset_creation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
import random
import numpy as np
import pandas as pd
from datasets import Dataset, load_dataset, DatasetDict, ClassLabel, concatenate_datasets
from sklearn.model_selection import StratifiedKFold
from configuration import Config
config = Config()
class Dataset_creation:
def __init__(self,undersampling=False):
# FACTUAL QA DATASET
f_raw_dataset = load_dataset("json", data_files=config.INPUT_FILE_PATH + "radiology_factual.json", field="data")
self.f_raw_dataset = f_raw_dataset["train"].add_column('type', ["factual"] * len(f_raw_dataset["train"]))
print("Factual Dataset:", self.f_raw_dataset)
# FREE-TEXT QA DATASET
t_raw_dataset = load_dataset("json", data_files=config.INPUT_FILE_PATH + "radiology_free_text.json", field="data")
self.t_raw_dataset = t_raw_dataset["train"].add_column('type', ["free-text"] * len(t_raw_dataset["train"]))
print("Free-text Dataset:", self.t_raw_dataset)
# MULTICHOICE QA DATASET
mc_raw_dataset = load_dataset("json", data_files=config.INPUT_FILE_PATH + "radiology_multichoice.json",field="data")
mc_raw_dataset = mc_raw_dataset.remove_columns("subject")
mc_raw_dataset = mc_raw_dataset["train"].add_column('type', ["multichoice"] * len(mc_raw_dataset["train"]))
# if the model is uncased, lowercase all the options
self.mc_raw_dataset = mc_raw_dataset.map(lambda example: {"options": [o.lower() for o in example["options"]]})
if undersampling:
self.mc_raw_dataset= self.under_sampling(self.mc_raw_dataset,id_ans="2")
print("Multichoice Dataset:", self.mc_raw_dataset)
def under_sampling(self,data,id_ans):
#id) 1:true/false 2: 1/2+ 3:limited/advanced
idx_0=[]
idx_station=[]
other_mc=[]
undersampled_idx=[]
for i in np.arange(len(data)):
if data["id"][i][-1] == id_ans and data["correct"][i] == 1:
idx_station.append(i)
elif data["id"][i][-1] == id_ans and data["correct"][i] == 0:
idx_0.append(i)
else: other_mc.append(i)
for idx in np.arange(len(idx_0)):
undersampled_idx.append(random.choice(idx_station))
new_data_1 = Dataset.from_dict(data[undersampled_idx])
data_0 = Dataset.from_dict(data[idx_0])
mc_data = Dataset.from_dict(data[other_mc])
print(len(new_data_1),len(data_0))
dataset= concatenate_datasets([data_0,new_data_1,mc_data])
return dataset
def cross_validation_split(self,k_fold=5):
# to obtain k indipendent test set
folds = StratifiedKFold(n_splits=config.K_FOLD)
dataset = concatenate_datasets([self.f_raw_dataset, self.t_raw_dataset, self.mc_raw_dataset])
dataset = dataset.shuffle(seed=1)
splits = folds.split(dataset, dataset["type"])
test_set = []
train_set = []
for i, (train_index, test_index) in enumerate(splits):
ft = 0; mc = 0; f = 0
for list_type in dataset[train_index]["type"]:
if list_type == "free-text": ft += 1
if list_type == "factual": f += 1
else: mc += 1
test_set.append(test_index)
train_set.append(train_index)
test_index_CV = pd.DataFrame(data=zip(test_set[0], test_set[1], test_set[2], test_set[3], test_set[4]))
train_index_CV = pd.DataFrame(data=zip(train_set[0], train_set[1], train_set[2], train_set[3], train_set[4]))
dataset_CV = pd.DataFrame(data=dataset, columns=dataset.features)
test_index_CV.to_csv(config.INPUT_FILE_PATH + "test_index_CV.csv")
train_index_CV.to_csv(config.INPUT_FILE_PATH + "train_index_CV.csv")
dataset_CV.to_csv(config.INPUT_FILE_PATH + "dataset_CV.csv")
print("> 5 CROSS-VALIDATION: COMPLETED!")
def context_token_length(type,context,str_question,*str_options):
tokenizer = config.TOKENIZER
if type == "factual" or type == "free-text": question_len = len(tokenizer.tokenize( " Domanda: " + str(str_question)))
else: question_len = len(tokenizer.tokenize("Opzioni: " + str(str_options) + " . Domanda: " + str_question))
output_len = config.MAX_INPUT_TOKENS - question_len
context_token = tokenizer.tokenize(context)
tronc_context = context_token[0:output_len]
new_context = tokenizer.convert_tokens_to_ids(tronc_context)
new_context = tokenizer.decode(new_context)
return new_context
def input_output_builder(input_type, question, answer, context, options):
prefix_separator = " "
if question[-1] != "?": str_question = question + "?"
else: str_question = question
new_context = context
if input_type == "factual" or input_type == "free-text":
input_text = new_context + prefix_separator + " Domanda: " + str_question
output_text = answer
else: # (input_type == multichoice)
option_separator = ")"
characters = "'[]"
for x in range(len(characters)):
options = options.replace(characters[x], "")
opt = options.split(",")
correct_str = opt[int(answer[0])].strip()
str_options = " ".join([str(i+1) + option_separator + " " + opt[i] for i in range(len(opt))])
if question[-1] != "?": str_question = question + "?"
else: str_question = question
new_context = context
input_text = new_context + prefix_separator + "Opzioni: " + str_options + prefix_separator + " . Domanda: " + str_question
output_text = correct_str
return input_text, output_text
def io_wrapper(example):
if example["type"] == "free-text" or example["type"] == "factual":
example["input_text"],example["output_text"] = input_output_builder(input_type=example["type"], question=example["question"], answer=example["answer"], context=example["context"], options=list())
else:
example["input_text"],example["output_text"] = input_output_builder(input_type=example["type"], question=example["question"], answer=example["correct"], context=example["context"], options=example["options"])
return example
# Splitting in batches for ex-post combination
def splitting_batches(dataset, tokenizer):
batches_single_entry = []
for entry in dataset:
if entry["type"] == "factual" or entry["type"] == "free-text":
question_len = len(tokenizer.tokenize(" Domanda: " + str(entry["question"])))
else:
option_separator = ")"
characters = "'[]"
for x in range(len(characters)):
entry["options"] = entry["options"].replace(characters[x], "")
opt = entry["options"].split(",")
correct_str = opt[int(entry["correct"][0])]
str_options = " ".join([str(i+1) + option_separator + " " + opt[i] for i in range(len(opt))])
question_len = len(tokenizer.tokenize("Opzioni: " + str(str_options) + " . Domanda: " + str(entry["question"])))
output_len = config.MAX_INPUT_TOKENS - question_len
context_tokens = tokenizer.tokenize(entry["context"])
context_tokens_n = len(context_tokens)
n = (int(context_tokens_n/output_len) + (context_tokens_n % output_len>0))
start_pos_batch = 0
for ni in np.arange(n):
if start_pos_batch+output_len <= context_tokens_n:
tronc_context = context_tokens[start_pos_batch:start_pos_batch+output_len]
else: tronc_context = context_tokens[start_pos_batch:context_tokens_n]
new_context = tokenizer.convert_tokens_to_ids(tronc_context)
new_context = tokenizer.decode(new_context)
start_pos_batch = start_pos_batch+output_len
if entry["type"] == "factual" or entry["type"] =="free-text":
element = {"batches":n, "id":entry["id"], "type":entry["type"],"context":new_context, "question":entry["question"], "answer":entry["answer"], "options":"None", "correct":"None"}
else:
element = {"batches":n, "id":entry["id"], "type":entry["type"],"context":new_context, "question":entry["question"], "answer": "None", "options":opt, "correct":entry["correct"]}
batches_single_entry.append(element)
dataset_batches = pd.DataFrame([], columns= ["batches","id","type","context","question","answer","options","correct"])
for i in np.arange(len(batches_single_entry)):
dataset_batches.loc[i] = list(batches_single_entry[i].values())
datasetDict = Dataset.from_pandas(dataset_batches.astype(str))
return datasetDict
# k-fold CV splitting for ex-post combination
def epc_k_fold_splitting(k_fold, seed, tokenizer):
test_index_CV = pd.read_csv(config.INPUT_FILE_PATH + "test_index_CV.csv")
train_index_CV = pd.read_csv(config.INPUT_FILE_PATH + "train_index_CV.csv")
dataset_CV = pd.read_csv(config.INPUT_FILE_PATH + "dataset_CV.csv")
test_index_CV = test_index_CV.drop("Unnamed: 0", axis='columns')
train_index_CV = train_index_CV.drop("Unnamed: 0", axis='columns')
dataset_CV = dataset_CV.drop("Unnamed: 0", axis='columns')
dataset_CV = dataset_CV.astype(str)
test_set = Dataset.from_pandas(pd.DataFrame(dataset_CV.iloc[test_index_CV.iloc[:,k_fold],:]))
test_set = test_set.remove_columns("__index_level_0__")
train_dev_set = Dataset.from_pandas(pd.DataFrame(dataset_CV.iloc[train_index_CV.iloc[:,k_fold],:]))
train_dev_set = train_dev_set.remove_columns("__index_level_0__")
train_dev_set = train_dev_set.add_column("type_encoding", train_dev_set["type"])
type_code = ClassLabel(num_classes = 3, names=['factual', 'free-text', 'multichoice'])
train_dev_set = train_dev_set.cast_column("type_encoding", type_code)
temp_split = train_dev_set.train_test_split(stratify_by_column="type_encoding", seed= seed, test_size=0.2)
train_set = temp_split["train"]
dev_set = temp_split["test"]
train_batch_set = splitting_batches(train_set,tokenizer)
test_batch_set = splitting_batches(test_set,tokenizer)
dev_batch_set = splitting_batches(dev_set,tokenizer)
train_batch_set = train_batch_set.map(io_wrapper, remove_columns = ["context","question","answer","options","correct","__index_level_0__"])
dev_batch_set = dev_batch_set.map(io_wrapper, remove_columns = ["context","question","answer","options","correct","__index_level_0__"])
test_batch_set = test_batch_set.map(io_wrapper, remove_columns = ["context","question","answer","options","correct","__index_level_0__"])
multitask_dataset = DatasetDict({"train": train_batch_set, "test": test_batch_set, "dev": dev_batch_set})
multitask_dataset["test"] = multitask_dataset["test"].shuffle(seed)
multitask_dataset["train"] = multitask_dataset["train"].shuffle(seed)
multitask_dataset["dev"] = multitask_dataset["dev"].shuffle(seed)
print("> EPC MULTITASK_DATASET: CREATED")
return multitask_dataset
# Considering the 1st batch for batch-truncation
def bt_splitting(dataset,tokenizer):
new_dataset = []
for entry in dataset:
if entry["type"] == "factual" or entry["type"] == "free-text":
question_len = len(tokenizer.tokenize(" Domanda: " + str(entry["question"])))
else:
option_separator = ")"
characters = "'[]"
for x in range(len(characters)):
entry["options"] = entry["options"].replace(characters[x], "")
opt = entry["options"].split(",")
correct_str = opt[int(entry["correct"][0])]
str_options = " ".join([str(i + 1) + option_separator + " " + opt[i] for i in range(len(opt))])
question_len = len(tokenizer.tokenize("Opzioni: " + str(str_options) + " . Domanda: " + str(entry["question"])))
output_len = config.MAX_INPUT_TOKENS - question_len
context_tokens = tokenizer.tokenize(entry["context"])
tronc_context = context_tokens[:output_len]
new_context = tokenizer.convert_tokens_to_ids(tronc_context)
dec_context = tokenizer.decode(new_context)
if entry["type"] == "factual" or entry["type"] == "free-text":
element = {"id": entry["id"], "type": entry["type"], "context": dec_context,
"question": entry["question"], "answer": entry["answer"], "options": "None", "correct": "None"}
else:
element = {"id": entry["id"], "type": entry["type"], "context": dec_context,
"question": entry["question"], "answer": "None", "options": opt, "correct": entry["correct"]}
new_dataset.append(element)
dataset_batches = pd.DataFrame([], columns=["id", "type", "context", "question", "answer", "options",
"correct"])
for i in np.arange(len(new_dataset)):
dataset_batches.loc[i] = list(new_dataset[i].values())
datasetDict = Dataset.from_pandas(dataset_batches.astype(str))
return datasetDict
# k-fold CV splitting for batch-truncation
def bt_k_fold_splitting(k_fold, seed):
data = Dataset_creation(undersampling=True)
data.cross_validation_split(k_fold= k_fold)
test_index_CV = pd.read_csv(config.INPUT_FILE_PATH + "test_index_CV.csv")
train_index_CV = pd.read_csv(config.INPUT_FILE_PATH + "train_index_CV.csv")
dataset_CV = pd.read_csv(config.INPUT_FILE_PATH + "dataset_CV.csv")
test_index_CV = test_index_CV.drop("Unnamed: 0", axis='columns')
train_index_CV = train_index_CV.drop("Unnamed: 0", axis='columns')
dataset_CV = dataset_CV.drop("Unnamed: 0", axis='columns')
dataset_CV = dataset_CV.astype(str)
test_set = Dataset.from_pandas(pd.DataFrame(dataset_CV.iloc[test_index_CV.iloc[:, k_fold], :]))
test_set = test_set.remove_columns("__index_level_0__")
train_dev_set = Dataset.from_pandas(pd.DataFrame(dataset_CV.iloc[train_index_CV.iloc[:, k_fold], :]))
train_dev_set = train_dev_set.remove_columns("__index_level_0__")
train_dev_set = train_dev_set.add_column("type_encoding", train_dev_set["type"])
type_code = ClassLabel(num_classes=3, names=['factual', 'free-text', 'multichoice'])
train_dev_set = train_dev_set.cast_column("type_encoding", type_code)
temp_split = train_dev_set.train_test_split(stratify_by_column="type_encoding", seed=seed, test_size=0.2)
train_set = temp_split["train"]
dev_set = temp_split["test"]
train_split_set = bt_splitting(train_set, config.TOKENIZER)
test_split_set = bt_splitting(test_set, config.TOKENIZER)
dev_split_set = bt_splitting(dev_set,config.TOKENIZER)
train_set = train_split_set.map(io_wrapper,remove_columns=["context", "question", "answer", "options", "correct"])
dev_set = dev_split_set.map(io_wrapper,remove_columns=["context", "question", "answer", "options", "correct"])
test_set = test_split_set.map(io_wrapper, remove_columns=["context", "question", "answer", "options", "correct"])
multitask_dataset = DatasetDict({"train": train_set, "test": test_set, "dev": dev_set})
multitask_dataset["test"] = multitask_dataset["test"].shuffle(seed)
multitask_dataset["train"] = multitask_dataset["train"].shuffle(seed)
multitask_dataset["dev"] = multitask_dataset["dev"].shuffle(seed)
print("> BT MULTITASK_DATASET: CREATED")
return multitask_dataset