forked from ethz-adrl/control-toolbox
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNLOC.cpp
117 lines (85 loc) · 5.61 KB
/
NLOC.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
/*!
* \example NLOC.cpp
*
* This example shows how to use the nonlinear optimal control solvers iLQR, unconstrained Gauss-Newton-Multiple-Shooting (GNMS),
* as well as the hybrid methods iLQR-GNMS(M), where M denotes the number of multiple-shooting intervals. This example applies
* them to a simple second-order oscillator.
*
*/
#include <ct/optcon/optcon.h>
#include "exampleDir.h"
#include "plotResultsOscillator.h"
using namespace ct::core;
using namespace ct::optcon;
int main(int argc, char** argv)
{
/*get the state and control input dimension of the oscillator. Since we're dealing with a simple oscillator,
the state and control dimensions will be state_dim = 2, and control_dim = 1. */
const size_t state_dim = ct::core::SecondOrderSystem::STATE_DIM;
const size_t control_dim = ct::core::SecondOrderSystem::CONTROL_DIM;
/* STEP 1: set up the Nonlinear Optimal Control Problem
* First of all, we need to create instances of the system dynamics, the linearized system and the cost function. */
/* STEP 1-A: create a instance of the oscillator dynamics for the optimal control problem.
* Please also compare the documentation of SecondOrderSystem.h */
double w_n = 0.1;
double zeta = 5.0;
std::shared_ptr<ct::core::ControlledSystem<state_dim, control_dim>> oscillatorDynamics(
new ct::core::SecondOrderSystem(w_n, zeta));
/* STEP 1-B: Although the first order derivatives of the oscillator are easy to derive, let's illustrate the use of the System Linearizer,
* which performs numerical differentiation by the finite-difference method. The system linearizer simply takes the
* the system dynamics as argument. Alternatively, you could implement your own first-order derivatives by overloading the class LinearSystem.h */
std::shared_ptr<ct::core::SystemLinearizer<state_dim, control_dim>> adLinearizer(
new ct::core::SystemLinearizer<state_dim, control_dim>(oscillatorDynamics));
/* STEP 1-C: create a cost function. We have pre-specified the cost-function weights for this problem in "nlocCost.info".
* Here, we show how to create terms for intermediate and final cost and how to automatically load them from the configuration file.
* The verbose option allows to print information about the loaded terms on the terminal. */
std::shared_ptr<ct::optcon::TermQuadratic<state_dim, control_dim>> intermediateCost(
new ct::optcon::TermQuadratic<state_dim, control_dim>());
std::shared_ptr<ct::optcon::TermQuadratic<state_dim, control_dim>> finalCost(
new ct::optcon::TermQuadratic<state_dim, control_dim>());
bool verbose = true;
intermediateCost->loadConfigFile(ct::optcon::exampleDir + "/nlocCost.info", "intermediateCost", verbose);
finalCost->loadConfigFile(ct::optcon::exampleDir + "/nlocCost.info", "finalCost", verbose);
// Since we are using quadratic cost function terms in this example, the first and second order derivatives are immediately known and we
// define the cost function to be an "Analytical Cost Function". Let's create the corresponding object and add the previously loaded
// intermediate and final term.
std::shared_ptr<CostFunctionQuadratic<state_dim, control_dim>> costFunction(
new CostFunctionAnalytical<state_dim, control_dim>());
costFunction->addIntermediateTerm(intermediateCost);
costFunction->addFinalTerm(finalCost);
/* STEP 1-D: initialization with initial state and desired time horizon */
StateVector<state_dim> x0;
x0.setRandom(); // in this example, we choose a random initial state x0
ct::core::Time timeHorizon = 1.0; // and a final time horizon in [sec]
// STEP 1-E: create and initialize an "optimal control problem"
ContinuousOptConProblem<state_dim, control_dim> optConProblem(
timeHorizon, x0, oscillatorDynamics, costFunction, adLinearizer);
/* STEP 2: set up a nonlinear optimal control solver. */
/* STEP 2-A: Create the settings.
* the type of solver, and most parameters, like number of shooting intervals, etc.,
* can be chosen using the following settings struct. Let's use, the iterative
* linear quadratic regulator, iLQR, for this example. In the following, we
* modify only a few settings, for more detail, check out the NLOptConSettings class. */
NLOptConSettings nloc_settings;
nloc_settings.load(ct::optcon::exampleDir + "/nlocSolver.info", true, "ilqr");
/* STEP 2-B: provide an initial guess */
// calculate the number of time steps K
size_t K = nloc_settings.computeK(timeHorizon);
/* design trivial initial controller for iLQR. Note that in this simple example,
* we can simply use zero feedforward with zero feedback gains around the initial position.
* In more complex examples, a more elaborate initial guess may be required.*/
FeedbackArray<state_dim, control_dim> u0_fb(K, FeedbackMatrix<state_dim, control_dim>::Zero());
ControlVectorArray<control_dim> u0_ff(K, ControlVector<control_dim>::Random());
StateVectorArray<state_dim> x_ref_init(K + 1, x0);
NLOptConSolver<state_dim, control_dim>::Policy_t initController(x_ref_init, u0_ff, u0_fb, nloc_settings.dt);
// STEP 2-C: create an NLOptConSolver instance
NLOptConSolver<state_dim, control_dim> iLQR(optConProblem, nloc_settings);
// set the initial guess
iLQR.setInitialGuess(initController);
// STEP 3: solve the optimal control problem
iLQR.solve();
// STEP 4: retrieve the solution
ct::core::StateFeedbackController<state_dim, control_dim> solution = iLQR.getSolution();
// let's plot the output
plotResultsOscillator<state_dim, control_dim>(solution.x_ref(), solution.uff(), solution.time());
}