-
Notifications
You must be signed in to change notification settings - Fork 1.7k
/
Copy pathuimatrix.dart
645 lines (593 loc) · 16.8 KB
/
uimatrix.dart
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
// Copyright (c) 2023, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
// Taken from https://github.com/yjbanov/uimatrix/blob/fd7244e09febe7e1f0dc8967b1e301adf2ebb833/lib/uimatrix.dart
library uimatrix;
import 'package:meta/meta.dart';
// Matrix shapes:
// Identity:
// 1 0 0 0
// 0 1 0 0
// 0 0 1 0
// 0 0 0 1
// Translation 2D:
// 1 0 0 x
// 0 1 0 y
// 0 0 1 0
// 0 0 0 1
// General 2D:
// sx k1 0 x
// k2 sy 0 y
// 0 0 1 0
// 0 0 0 1
// Most general case:
// m00 m01 m02 m03
// m10 m11 m12 m13
// m20 m21 m22 m23
// m30 m31 m32 m33
//
// sx k1 m8 x
// k2 sy m9 y
// m2 m6 sz z
// p1 p2 p3 w
// class UiMatrix {
// m00 (scaleX)
// m11 (scaleY)
// m03 (dx)
// m13 (dy)
// _MatrixExtension? rest
// }
//
// class _MatrixExtension {
// m01 m02
// m10 m12
// m20 m21 m22 m23
// m30 m31 m32 m33
// }
@immutable
final class UiMatrix {
/// The identity transform.
///
/// Has the following shape:
///
/// 1 0 0 0
/// 0 1 0 0
/// 0 0 1 0
/// 0 0 0 1
static const UiMatrix identity = UiMatrix._(m00: 1, m11: 1, m03: 0, m13: 0);
/// Instantiates a 2D translation matrix.
///
/// A 2D translation matrix has the following shape:
///
/// 1 0 0 dx
/// 0 1 0 dy
/// 0 0 1 0
/// 0 0 0 1
///
/// If both `x` and `y` are zero, returns the [identity] constant.
static UiMatrix translation2d({required double dx, required double dy}) {
if (dx == 0 && dy == 0) {
return identity;
}
return UiMatrix._(m00: 1, m11: 1, m03: dx, m13: dy);
}
/// Instantiates a 2D transformation that includes scaling and translation.
///
/// A simple 2D transformation has the following shape:
///
/// sx 0 0 dx
/// 0 sy 0 dy
/// 0 0 1 0
/// 0 0 0 1
///
/// If both `x` and `y` are zero, returns the [identity] constant.
static UiMatrix simple2d({
required double scaleX,
required double scaleY,
required double dx,
required double dy,
}) {
if (scaleX == 1 && scaleY == 1) {
return UiMatrix.translation2d(dx: dx, dy: dy);
}
return UiMatrix._(m00: scaleX, m11: scaleY, m03: dx, m13: dy);
}
/// Instantiates a general 2D transform matrix.
///
/// A general 2D transform matrix has the following shape:
///
/// sx k1 0 dx
/// k2 sy 0 dy
/// 0 0 1 0
/// 0 0 0 1
///
/// If the values of `sx` and `sy` and equal to 1, and the values of `k1` and
/// `k2` are equal to zero, this matrix returns the equivalent of invoking
/// [UiMatrix.translation2d]. If, in addition, the values of `x` and `y` are
/// zero, returns the [identity] constant.
static UiMatrix transform2d({
required double scaleX,
required double scaleY,
required double dx,
required double dy,
required double k1,
required double k2,
}) {
if (k1 == 0 && k2 == 0) {
return UiMatrix.simple2d(scaleX: scaleX, scaleY: scaleY, dx: dx, dy: dy);
}
return UiMatrix._(
m00: scaleX,
m11: scaleY,
m03: dx,
m13: dy,
rest: _MatrixExtension(
m01: k1,
m02: 0,
m10: k2,
m12: 0,
m20: 0,
m21: 0,
m22: 1,
m23: 0,
m30: 0,
m31: 0,
m32: 0,
m33: 1,
),
);
}
/// Instantiates a general 3D transform matrix from its components.
///
/// A general 3D transform matrix has the following shape:
///
/// m00 m01 m02 m03
/// m10 m11 m12 m13
/// m20 m21 m22 m23
/// m30 m31 m32 m33
///
/// If values of `sx`, `sy`, `k1`, and `k2` are all zero, this matrix returns
/// the equivalent of invoking [UiMatrix.translation2d]. If, in addition, the
/// values of `x` and `y` are zero, returns the [identity] constant.
static UiMatrix transform({
required double m00,
required double m01,
required double m02,
required double m03,
required double m10,
required double m11,
required double m12,
required double m13,
required double m20,
required double m21,
required double m22,
required double m23,
required double m30,
required double m31,
required double m32,
required double m33,
}) {
// Lower to simplae 2D if possible to avoid allocation of extension.
// * 0 0 *
// 0 * 0 *
// 0 0 1 0
// 0 0 0 1
if (m01 == 0 &&
m02 == 0 &&
m10 == 0 &&
m12 == 0 &&
m20 == 0 &&
m21 == 0 &&
m22 == 1 &&
m23 == 0 &&
m30 == 0 &&
m31 == 0 &&
m32 == 0 &&
m33 == 1) {
return UiMatrix.simple2d(scaleX: m00, scaleY: m11, dx: m03, dy: m13);
}
return UiMatrix._(
m00: m00,
m11: m11,
m03: m03,
m13: m13,
rest: _MatrixExtension(
m01: m01,
m02: m02,
m10: m10,
m12: m12,
m20: m20,
m21: m21,
m22: m22,
m23: m23,
m30: m30,
m31: m31,
m32: m32,
m33: m33,
),
);
}
const UiMatrix._({
required double m00,
required double m11,
required double m03,
required double m13,
_MatrixExtension? rest,
}) : _m00 = m00,
_m11 = m11,
_m03 = m03,
_m13 = m13,
_rest = rest;
final double _m00;
final double _m11;
final double _m03;
final double _m13;
final _MatrixExtension? _rest;
double get scaleX => _m00;
double get scaleY => _m11;
double get dx => _m03;
double get dy => _m13;
/// Computes a matrix equal to the negated `this`.
UiMatrix operator -() {
return UiMatrix._(
m00: -_m00,
m11: -_m11,
m03: -_m03,
m13: -_m13,
rest: _rest?._negate(),
);
}
/// Computes a matrix equal to the sum of `this` + `other`.
UiMatrix operator +(UiMatrix other) {
final _MatrixExtension? selfRest = _rest;
final _MatrixExtension? otherRest = other._rest;
// TODO: possible specializations
// * We're already paying the branch cost of null checking extensions. If
// one of extensions is null, extension addition can be avoided for free.
// * The final result may be simpler than the inputs and can be lowered to
// enable future specializations.
_MatrixExtension? rest;
if (otherRest != null || selfRest != null) {
rest =
(selfRest ?? _MatrixExtension._identityExtension) +
(otherRest ?? _MatrixExtension._identityExtension);
}
return UiMatrix._(
m00: _m00 + other._m00,
m11: _m11 + other._m11,
m03: _m03 + other._m03,
m13: _m13 + other._m13,
rest: rest,
);
}
/// Computes a matrix equal to the product `this` * `other`.
UiMatrix operator *(UiMatrix other) {
if (identical(other, UiMatrix.identity)) {
return this;
}
if (identical(this, UiMatrix.identity)) {
return other;
}
final _MatrixExtension? selfRest = _rest;
final _MatrixExtension? otherRest = other._rest;
if (otherRest == null) {
final double n00 = other._m00;
final double n11 = other._m11;
final double n03 = other._m03;
final double n13 = other._m13;
if (selfRest == null) {
return UiMatrix._(
m00: _m00 * n00,
m11: _m11 * n11,
m03: _m03 + _m00 * n03,
m13: _m13 + _m11 * n13,
);
} else {
return _generalMultiply(
this,
selfRest,
other,
_MatrixExtension._identityExtension,
);
}
} else {
if (selfRest == null) {
return _generalMultiply(
this,
_MatrixExtension._identityExtension,
other,
otherRest,
);
} else {
return _generalMultiply(this, selfRest, other, otherRest);
}
}
}
/// Computes the determinant of this matrix.
double determinant() {
final _MatrixExtension? rest = _rest;
if (rest == null) {
return _m00 * _m11;
} else {
return _generalDeterminant(this, rest);
}
}
/// Inverts this matrix.
///
/// If this matrix cannot be inverted, i.e. its [determinant] is zero, returns
/// null.
UiMatrix? invert() {
if (identical(this, UiMatrix.identity)) {
return this;
}
final _MatrixExtension? rest = _rest;
if (rest == null) {
final double a00 = _m00;
final double a11 = _m11;
final double a30 = _m03;
final double a31 = _m13;
final double det = a00 * a11;
if (det == 0.0) {
return null;
}
final double invDet = 1.0 / det;
return UiMatrix.simple2d(
scaleX: a11 * invDet,
scaleY: a00 * invDet,
dx: -a11 * a30 * invDet,
dy: -a00 * a31 * invDet,
);
} else {
return _generalInvert(this, rest);
}
}
}
@immutable
final class _MatrixExtension {
static const _MatrixExtension _identityExtension = _MatrixExtension(
m01: 0,
m02: 0,
m10: 0,
m12: 0,
m20: 0,
m21: 0,
m22: 1,
m23: 0,
m30: 0,
m31: 0,
m32: 0,
m33: 1,
);
const _MatrixExtension({
required double m01,
required double m02,
required double m10,
required double m12,
required double m20,
required double m21,
required double m22,
required double m23,
required double m30,
required double m31,
required double m32,
required double m33,
}) : _m01 = m01,
_m02 = m02,
_m10 = m10,
_m12 = m12,
_m20 = m20,
_m21 = m21,
_m22 = m22,
_m23 = m23,
_m30 = m30,
_m31 = m31,
_m32 = m32,
_m33 = m33;
final double _m01;
final double _m02;
final double _m10;
final double _m12;
final double _m20;
final double _m21;
final double _m22;
final double _m23;
final double _m30;
final double _m31;
final double _m32;
final double _m33;
_MatrixExtension _negate() {
return _MatrixExtension(
m01: -_m01,
m02: -_m02,
m10: -_m10,
m12: -_m12,
m20: -_m20,
m21: -_m21,
m22: -_m22,
m23: -_m23,
m30: -_m30,
m31: -_m31,
m32: -_m32,
m33: -_m33,
);
}
_MatrixExtension operator +(_MatrixExtension other) {
return _MatrixExtension(
m01: _m01 + other._m01,
m02: _m02 + other._m02,
m10: _m10 + other._m10,
m12: _m12 + other._m12,
m20: _m20 + other._m20,
m21: _m21 + other._m21,
m22: _m22 + other._m22,
m23: _m23 + other._m23,
m30: _m30 + other._m30,
m31: _m31 + other._m31,
m32: _m32 + other._m32,
m33: _m33 + other._m33,
);
}
}
UiMatrix _generalMultiply(
UiMatrix m,
_MatrixExtension mExt,
UiMatrix n,
_MatrixExtension nExt,
) {
final double m00 = m._m00;
final double m01 = mExt._m01;
final double m02 = mExt._m02;
final double m03 = m._m03;
final double m10 = mExt._m10;
final double m11 = m._m11;
final double m12 = mExt._m12;
final double m13 = m._m13;
final double m20 = mExt._m20;
final double m21 = mExt._m21;
final double m22 = mExt._m22;
final double m23 = mExt._m23;
final double m30 = mExt._m30;
final double m31 = mExt._m31;
final double m32 = mExt._m32;
final double m33 = mExt._m33;
final double n00 = n._m00;
final double n01 = nExt._m01;
final double n02 = nExt._m02;
final double n03 = n._m03;
final double n10 = nExt._m10;
final double n11 = n._m11;
final double n12 = nExt._m12;
final double n13 = n._m13;
final double n20 = nExt._m20;
final double n21 = nExt._m21;
final double n22 = nExt._m22;
final double n23 = nExt._m23;
final double n30 = nExt._m30;
final double n31 = nExt._m31;
final double n32 = nExt._m32;
final double n33 = nExt._m33;
final double v00 = (m00 * n00) + (m01 * n10) + (m02 * n20) + (m03 * n30);
final double v01 = (m00 * n01) + (m01 * n11) + (m02 * n21) + (m03 * n31);
final double v02 = (m00 * n02) + (m01 * n12) + (m02 * n22) + (m03 * n32);
final double v03 = (m00 * n03) + (m01 * n13) + (m02 * n23) + (m03 * n33);
final double v10 = (m10 * n00) + (m11 * n10) + (m12 * n20) + (m13 * n30);
final double v11 = (m10 * n01) + (m11 * n11) + (m12 * n21) + (m13 * n31);
final double v12 = (m10 * n02) + (m11 * n12) + (m12 * n22) + (m13 * n32);
final double v13 = (m10 * n03) + (m11 * n13) + (m12 * n23) + (m13 * n33);
final double v20 = (m20 * n00) + (m21 * n10) + (m22 * n20) + (m23 * n30);
final double v21 = (m20 * n01) + (m21 * n11) + (m22 * n21) + (m23 * n31);
final double v22 = (m20 * n02) + (m21 * n12) + (m22 * n22) + (m23 * n32);
final double v23 = (m20 * n03) + (m21 * n13) + (m22 * n23) + (m23 * n33);
final double v30 = (m30 * n00) + (m31 * n10) + (m32 * n20) + (m33 * n30);
final double v31 = (m30 * n01) + (m31 * n11) + (m32 * n21) + (m33 * n31);
final double v32 = (m30 * n02) + (m31 * n12) + (m32 * n22) + (m33 * n32);
final double v33 = (m30 * n03) + (m31 * n13) + (m32 * n23) + (m33 * n33);
return UiMatrix.transform(
m00: v00,
m01: v01,
m02: v02,
m03: v03,
m10: v10,
m11: v11,
m12: v12,
m13: v13,
m20: v20,
m21: v21,
m22: v22,
m23: v23,
m30: v30,
m31: v31,
m32: v32,
m33: v33,
);
}
double _generalDeterminant(UiMatrix matrix, _MatrixExtension rest) {
final double a00 = matrix._m00;
final double a01 = rest._m10;
final double a02 = rest._m20;
final double a03 = rest._m30;
final double a10 = rest._m01;
final double a11 = matrix._m11;
final double a12 = rest._m21;
final double a13 = rest._m31;
final double a20 = rest._m02;
final double a21 = rest._m12;
final double a22 = rest._m22;
final double a23 = rest._m32;
final double a30 = matrix._m03;
final double a31 = matrix._m13;
final double a32 = rest._m23;
final double a33 = rest._m33;
final double b00 = a00 * a11 - a01 * a10;
final double b01 = a00 * a12 - a02 * a10;
final double b02 = a00 * a13 - a03 * a10;
final double b03 = a01 * a12 - a02 * a11;
final double b04 = a01 * a13 - a03 * a11;
final double b05 = a02 * a13 - a03 * a12;
final double b06 = a20 * a31 - a21 * a30;
final double b07 = a20 * a32 - a22 * a30;
final double b08 = a20 * a33 - a23 * a30;
final double b09 = a21 * a32 - a22 * a31;
final double b10 = a21 * a33 - a23 * a31;
final double b11 = a22 * a33 - a23 * a32;
return b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06;
}
UiMatrix? _generalInvert(UiMatrix matrix, _MatrixExtension rest) {
final double a00 = matrix._m00;
final double a01 = rest._m10;
final double a02 = rest._m20;
final double a03 = rest._m30;
final double a10 = rest._m01;
final double a11 = matrix._m11;
final double a12 = rest._m21;
final double a13 = rest._m31;
final double a20 = rest._m02;
final double a21 = rest._m12;
final double a22 = rest._m22;
final double a23 = rest._m32;
final double a30 = matrix._m03;
final double a31 = matrix._m13;
final double a32 = rest._m23;
final double a33 = rest._m33;
final double b00 = a00 * a11 - a01 * a10;
final double b01 = a00 * a12 - a02 * a10;
final double b02 = a00 * a13 - a03 * a10;
final double b03 = a01 * a12 - a02 * a11;
final double b04 = a01 * a13 - a03 * a11;
final double b05 = a02 * a13 - a03 * a12;
final double b06 = a20 * a31 - a21 * a30;
final double b07 = a20 * a32 - a22 * a30;
final double b08 = a20 * a33 - a23 * a30;
final double b09 = a21 * a32 - a22 * a31;
final double b10 = a21 * a33 - a23 * a31;
final double b11 = a22 * a33 - a23 * a32;
final double det =
b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06;
if (det == 0.0) {
return null;
}
final double invDet = 1.0 / det;
// Inverse of a general matrix is guaranteed to be a general matrix, so we can
// instantiate a general matrix directly rather than trying to use
// constructors that attempt to lower the matrix to simpler kinds.
return UiMatrix._(
m00: (a11 * b11 - a12 * b10 + a13 * b09) * invDet,
m11: (a00 * b11 - a02 * b08 + a03 * b07) * invDet,
m03: (-a10 * b09 + a11 * b07 - a12 * b06) * invDet,
m13: (a00 * b09 - a01 * b07 + a02 * b06) * invDet,
rest: _MatrixExtension(
m01: (-a10 * b11 + a12 * b08 - a13 * b07) * invDet,
m02: (a10 * b10 - a11 * b08 + a13 * b06) * invDet,
m10: (-a01 * b11 + a02 * b10 - a03 * b09) * invDet,
m12: (-a00 * b10 + a01 * b08 - a03 * b06) * invDet,
m20: (a31 * b05 - a32 * b04 + a33 * b03) * invDet,
m21: (-a30 * b05 + a32 * b02 - a33 * b01) * invDet,
m22: (a30 * b04 - a31 * b02 + a33 * b00) * invDet,
m23: (-a30 * b03 + a31 * b01 - a32 * b00) * invDet,
m30: (-a21 * b05 + a22 * b04 - a23 * b03) * invDet,
m31: (a20 * b05 - a22 * b02 + a23 * b01) * invDet,
m32: (-a20 * b04 + a21 * b02 - a23 * b00) * invDet,
m33: (a20 * b03 - a21 * b01 + a22 * b00) * invDet,
),
);
}