-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
Copy pathhash_table.h
906 lines (824 loc) · 31.5 KB
/
hash_table.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
// Copyright (c) 2014, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#ifndef RUNTIME_VM_HASH_TABLE_H_
#define RUNTIME_VM_HASH_TABLE_H_
#include "platform/assert.h"
#include "vm/object.h"
namespace dart {
// Storage traits control how memory is allocated for HashTable.
// Default ArrayStorageTraits use an Array to store HashTable contents.
struct ArrayStorageTraits {
using ArrayHandle = Array;
using ArrayPtr = dart::ArrayPtr;
static constexpr intptr_t ArrayCid = kArrayCid;
static ArrayHandle& PtrToHandle(ArrayPtr ptr) { return Array::Handle(ptr); }
static void SetHandle(ArrayHandle& dst, const ArrayHandle& src) { // NOLINT
dst = src.ptr();
}
static void ClearHandle(ArrayHandle& handle) { // NOLINT
handle = Array::null();
}
static ArrayPtr New(Zone* zone, intptr_t length, Heap::Space space) {
return Array::New(length, space);
}
static bool IsImmutable(const ArrayHandle& handle) {
return handle.ptr()->untag()->InVMIsolateHeap();
}
static ObjectPtr At(ArrayHandle* array, intptr_t index) {
return array->At(index);
}
static void SetAt(ArrayHandle* array, intptr_t index, const Object& value) {
array->SetAt(index, value);
}
};
struct WeakArrayStorageTraits {
using ArrayHandle = WeakArray;
using ArrayPtr = dart::WeakArrayPtr;
static constexpr intptr_t ArrayCid = kWeakArrayCid;
static ArrayHandle& PtrToHandle(ArrayPtr ptr) {
return WeakArray::Handle(ptr);
}
static void SetHandle(ArrayHandle& dst, const ArrayHandle& src) { // NOLINT
dst = src.ptr();
}
static void ClearHandle(ArrayHandle& handle) { // NOLINT
handle = WeakArray::null();
}
static ArrayPtr New(Zone* zone, intptr_t length, Heap::Space space) {
return WeakArray::New(length, space);
}
static bool IsImmutable(const ArrayHandle& handle) {
return handle.ptr()->untag()->InVMIsolateHeap();
}
static ObjectPtr At(ArrayHandle* array, intptr_t index) {
return array->At(index);
}
static void SetAt(ArrayHandle* array, intptr_t index, const Object& value) {
array->SetAt(index, value);
}
};
struct AcqRelStorageTraits : ArrayStorageTraits {
static ObjectPtr At(ArrayHandle* array, intptr_t index) {
return array->AtAcquire(index);
}
static void SetAt(ArrayHandle* array, intptr_t index, const Object& value) {
array->SetAtRelease(index, value);
}
};
struct WeakAcqRelStorageTraits : WeakArrayStorageTraits {
static ObjectPtr At(ArrayHandle* array, intptr_t index) {
return array->AtAcquire(index);
}
static void SetAt(ArrayHandle* array, intptr_t index, const Object& value) {
array->SetAtRelease(index, value);
}
};
class HashTableBase : public ValueObject {
public:
static const Object& UnusedMarker() { return Object::sentinel(); }
static const Object& DeletedMarker() { return Object::null_object(); }
};
// OVERVIEW:
//
// Hash maps and hash sets all use RawArray as backing storage. At the lowest
// level is a generic open-addressing table that supports deletion.
// - HashTable
// The next layer provides ordering and iteration functionality:
// - UnorderedHashTable
// - LinkedListHashTable (TODO(koda): Implement.)
// The utility class HashTables handles growth and conversion.
// The next layer fixes the payload size and provides a natural interface:
// - HashMap
// - HashSet
// Combining either of these with an iteration strategy, we get the templates
// intended for use outside this file:
// - UnorderedHashMap
// - LinkedListHashMap
// - UnorderedHashSet
// - LinkedListHashSet
// Each of these can be finally specialized with KeyTraits to support any set of
// lookup key types (e.g., look up a char* in a set of String objects), and
// any equality and hash code computation.
//
// The classes all wrap an Array handle, and methods like HashSet::Insert can
// trigger growth into a new RawArray, updating the handle. Debug mode asserts
// that 'Release' was called once to access the final array before destruction.
// NOTE: The handle returned by 'Release' is cleared by ~HashTable.
//
// Example use:
// typedef UnorderedHashMap<FooTraits> FooMap;
// ...
// FooMap cache(get_foo_cache());
// cache.UpdateOrInsert(name0, obj0);
// cache.UpdateOrInsert(name1, obj1);
// ...
// set_foo_cache(cache.Release());
//
// If you *know* that no mutating operations were called, you can optimize:
// ...
// obj ^= cache.GetOrNull(name);
// ASSERT(cache.Release().ptr() == get_foo_cache());
//
// TODO(koda): When exposing these to Dart code, document and assert that
// KeyTraits methods must not run Dart code (since the C++ code doesn't check
// for concurrent modification).
// Open-addressing hash table template using a RawArray as backing storage.
//
// The elements of the array are partitioned into entries:
// [ header | metadata | entry0 | entry1 | ... | entryN ]
// Each entry contains a key, followed by zero or more payload components,
// and has 3 possible states: unused, occupied, or deleted.
// The header tracks the number of entries in each state.
// Any object except the backing storage array and Object::sentinel()
// may be stored as a key. Any object may be stored in a payload.
//
// Parameters
// KeyTraits: defines static methods
// bool IsMatch(const Key& key, const Object& obj) and
// uword Hash(const Key& key) for any number of desired lookup key types.
// kPayloadSize: number of components of the payload in each entry.
// kMetaDataSize: number of elements reserved (e.g., for iteration order data).
template <typename KeyTraits,
intptr_t kPayloadSize,
intptr_t kMetaDataSize,
typename StorageTraits = ArrayStorageTraits>
class HashTable : public HashTableBase {
public:
typedef KeyTraits Traits;
typedef StorageTraits Storage;
// Uses the passed in handles for all handle operations.
// 'Release' must be called at the end to obtain the final table
// after potential growth/shrinkage.
HashTable(Object* key, Smi* index, typename StorageTraits::ArrayHandle* data)
: key_handle_(key),
smi_handle_(index),
data_(data),
released_data_(nullptr) {}
// Uses 'zone' for handle allocation. 'Release' must be called at the end
// to obtain the final table after potential growth/shrinkage.
HashTable(Zone* zone, typename StorageTraits::ArrayPtr data)
: key_handle_(&Object::Handle(zone)),
smi_handle_(&Smi::Handle(zone)),
data_(&StorageTraits::PtrToHandle(data)),
released_data_(nullptr) {}
// Returns the final table. The handle is cleared when this HashTable is
// destroyed.
typename StorageTraits::ArrayHandle& Release() {
ASSERT(data_ != nullptr);
ASSERT(released_data_ == nullptr);
// Ensure that no methods are called after 'Release'.
released_data_ = data_;
data_ = nullptr;
return *released_data_;
}
~HashTable() {
// In DEBUG mode, calling 'Release' is mandatory.
ASSERT(data_ == nullptr);
if (released_data_ != nullptr) {
StorageTraits::ClearHandle(*released_data_);
}
}
// Returns a backing storage size such that 'num_occupied' distinct keys can
// be inserted into the table.
static intptr_t ArrayLengthForNumOccupied(intptr_t num_occupied) {
// Because we use quadratic (actually triangle number) probing it is
// important that the size is a power of two (otherwise we could fail to
// find an empty slot). This is described in Knuth's The Art of Computer
// Programming Volume 2, Chapter 6.4, exercise 20 (solution in the
// appendix, 2nd edition).
intptr_t num_entries = Utils::RoundUpToPowerOfTwo(num_occupied + 1);
return kFirstKeyIndex + (kEntrySize * num_entries);
}
// Initializes an empty table.
void Initialize() const {
ASSERT(data_->Length() >= ArrayLengthForNumOccupied(0));
*smi_handle_ = Smi::New(0);
StorageTraits::SetAt(data_, kOccupiedEntriesIndex, *smi_handle_);
StorageTraits::SetAt(data_, kDeletedEntriesIndex, *smi_handle_);
#if !defined(PRODUCT)
StorageTraits::SetAt(data_, kNumGrowsIndex, *smi_handle_);
StorageTraits::SetAt(data_, kNumLT5LookupsIndex, *smi_handle_);
StorageTraits::SetAt(data_, kNumLT25LookupsIndex, *smi_handle_);
StorageTraits::SetAt(data_, kNumGT25LookupsIndex, *smi_handle_);
StorageTraits::SetAt(data_, kNumProbesIndex, *smi_handle_);
#endif // !defined(PRODUCT)
for (intptr_t i = kHeaderSize; i < data_->Length(); ++i) {
StorageTraits::SetAt(data_, i, UnusedMarker());
}
}
// Returns whether 'key' matches any key in the table.
template <typename Key>
bool ContainsKey(const Key& key) const {
return FindKey(key) != -1;
}
// Returns the entry that matches 'key', or -1 if none exists.
template <typename Key>
intptr_t FindKey(const Key& key) const {
const intptr_t num_entries = NumEntries();
// TODO(koda): Add salt.
NOT_IN_PRODUCT(intptr_t collisions = 0;)
uword hash = KeyTraits::Hash(key);
ASSERT(Utils::IsPowerOfTwo(num_entries));
intptr_t probe = hash & (num_entries - 1);
int probe_distance = 1;
while (true) {
if (IsUnused(probe)) {
NOT_IN_PRODUCT(UpdateCollisions(collisions);)
return -1;
} else if (!IsDeleted(probe)) {
*key_handle_ = GetKey(probe);
if (KeyTraits::IsMatch(key, *key_handle_)) {
NOT_IN_PRODUCT(UpdateCollisions(collisions);)
return probe;
}
NOT_IN_PRODUCT(collisions += 1;)
}
// Advance probe. See ArrayLengthForNumOccupied comment for
// explanation of how we know this hits all slots.
probe = (probe + probe_distance) & (num_entries - 1);
probe_distance++;
}
UNREACHABLE();
return -1;
}
// Sets *entry to either:
// - an occupied entry matching 'key', and returns true, or
// - an unused/deleted entry where a matching key may be inserted,
// and returns false.
template <typename Key>
bool FindKeyOrDeletedOrUnused(const Key& key, intptr_t* entry) const {
const intptr_t num_entries = NumEntries();
ASSERT(entry != nullptr);
NOT_IN_PRODUCT(intptr_t collisions = 0;)
uword hash = KeyTraits::Hash(key);
ASSERT(Utils::IsPowerOfTwo(num_entries));
intptr_t probe = hash & (num_entries - 1);
int probe_distance = 1;
intptr_t deleted = -1;
while (true) {
if (IsUnused(probe)) {
*entry = (deleted != -1) ? deleted : probe;
NOT_IN_PRODUCT(UpdateCollisions(collisions);)
return false;
} else if (IsDeleted(probe)) {
if (deleted == -1) {
deleted = probe;
}
} else {
*key_handle_ = GetKey(probe);
if (KeyTraits::IsMatch(key, *key_handle_)) {
*entry = probe;
NOT_IN_PRODUCT(UpdateCollisions(collisions);)
return true;
}
NOT_IN_PRODUCT(collisions += 1;)
}
// Advance probe. See ArrayLengthForNumOccupied comment for
// explanation of how we know this hits all slots.
probe = (probe + probe_distance) & (num_entries - 1);
probe_distance++;
}
UNREACHABLE();
return false;
}
// Sets the key of a previously unoccupied entry. This must not be the last
// unoccupied entry.
void InsertKey(intptr_t entry, const Object& key) const {
ASSERT(key.ptr() != UnusedMarker().ptr());
ASSERT(key.ptr() != DeletedMarker().ptr());
ASSERT(!IsOccupied(entry));
AdjustSmiValueAt(kOccupiedEntriesIndex, 1);
if (IsDeleted(entry)) {
AdjustSmiValueAt(kDeletedEntriesIndex, -1);
} else {
ASSERT(IsUnused(entry));
}
InternalSetKey(entry, key);
ASSERT(IsOccupied(entry));
}
bool IsUnused(intptr_t entry) const {
return InternalGetKey(entry) == UnusedMarker().ptr();
}
bool IsOccupied(intptr_t entry) const {
return !IsUnused(entry) && !IsDeleted(entry);
}
bool IsDeleted(intptr_t entry) const {
return InternalGetKey(entry) == DeletedMarker().ptr();
}
ObjectPtr GetKey(intptr_t entry) const {
ASSERT(IsOccupied(entry));
return InternalGetKey(entry);
}
ObjectPtr GetPayload(intptr_t entry, intptr_t component) const {
ASSERT(IsOccupied(entry));
return WeakSerializationReference::Unwrap(
StorageTraits::At(data_, PayloadIndex(entry, component)));
}
void UpdatePayload(intptr_t entry,
intptr_t component,
const Object& value) const {
ASSERT(IsOccupied(entry));
ASSERT(0 <= component && component < kPayloadSize);
StorageTraits::SetAt(data_, PayloadIndex(entry, component), value);
}
// Deletes both the key and payload of the specified entry.
void DeleteEntry(intptr_t entry) const {
ASSERT(IsOccupied(entry));
for (intptr_t i = 0; i < kPayloadSize; ++i) {
UpdatePayload(entry, i, DeletedMarker());
}
InternalSetKey(entry, DeletedMarker());
AdjustSmiValueAt(kOccupiedEntriesIndex, -1);
AdjustSmiValueAt(kDeletedEntriesIndex, 1);
}
intptr_t NumEntries() const {
return (data_->Length() - kFirstKeyIndex) / kEntrySize;
}
intptr_t NumUnused() const {
return NumEntries() - NumOccupied() - NumDeleted();
}
intptr_t NumOccupied() const { return GetSmiValueAt(kOccupiedEntriesIndex); }
intptr_t NumDeleted() const { return GetSmiValueAt(kDeletedEntriesIndex); }
Object& KeyHandle() const { return *key_handle_; }
Smi& SmiHandle() const { return *smi_handle_; }
#if !defined(PRODUCT)
intptr_t NumGrows() const { return GetSmiValueAt(kNumGrowsIndex); }
intptr_t NumLT5Collisions() const {
return GetSmiValueAt(kNumLT5LookupsIndex);
}
intptr_t NumLT25Collisions() const {
return GetSmiValueAt(kNumLT25LookupsIndex);
}
intptr_t NumGT25Collisions() const {
return GetSmiValueAt(kNumGT25LookupsIndex);
}
intptr_t NumProbes() const { return GetSmiValueAt(kNumProbesIndex); }
void UpdateGrowth() const {
if (KeyTraits::ReportStats()) {
AdjustSmiValueAt(kNumGrowsIndex, 1);
}
}
void UpdateCollisions(intptr_t collisions) const {
if (KeyTraits::ReportStats()) {
if (Storage::IsImmutable(*data_)) {
return;
}
AdjustSmiValueAt(kNumProbesIndex, collisions + 1);
if (collisions < 5) {
AdjustSmiValueAt(kNumLT5LookupsIndex, 1);
} else if (collisions < 25) {
AdjustSmiValueAt(kNumLT25LookupsIndex, 1);
} else {
AdjustSmiValueAt(kNumGT25LookupsIndex, 1);
}
}
}
void PrintStats() const {
if (!KeyTraits::ReportStats()) {
return;
}
const intptr_t num5 = NumLT5Collisions();
const intptr_t num25 = NumLT25Collisions();
const intptr_t num_more = NumGT25Collisions();
// clang-format off
OS::PrintErr("Stats for %s table :\n"
" Size of table = %" Pd ",Number of Occupied entries = %" Pd "\n"
" Number of Grows = %" Pd "\n"
" Number of lookups with < 5 collisions = %" Pd "\n"
" Number of lookups with < 25 collisions = %" Pd "\n"
" Number of lookups with > 25 collisions = %" Pd "\n"
" Average number of probes = %g\n",
KeyTraits::Name(),
NumEntries(), NumOccupied(), NumGrows(),
num5, num25, num_more,
static_cast<double>(NumProbes()) / (num5 + num25 + num_more));
// clang-format on
}
#endif // !PRODUCT
void UpdateWeakDeleted() const {
if (StorageTraits::ArrayCid != kWeakArrayCid) return;
// As entries are deleted by GC, NumOccupied and NumDeleted become stale.
// Re-count before growing/rehashing to prevent table growth when the
// number of live entries is not increasing.
intptr_t num_occupied = 0;
intptr_t num_deleted = 0;
for (intptr_t i = 0, n = NumEntries(); i < n; i++) {
if (IsDeleted(i)) {
num_deleted++;
}
if (IsOccupied(i)) {
num_occupied++;
}
}
SetSmiValueAt(kOccupiedEntriesIndex, num_occupied);
SetSmiValueAt(kDeletedEntriesIndex, num_deleted);
}
protected:
static constexpr intptr_t kOccupiedEntriesIndex = 0;
static constexpr intptr_t kDeletedEntriesIndex = 1;
#if defined(PRODUCT)
static constexpr intptr_t kHeaderSize = kDeletedEntriesIndex + 1;
#else
static constexpr intptr_t kNumGrowsIndex = 2;
static constexpr intptr_t kNumLT5LookupsIndex = 3;
static constexpr intptr_t kNumLT25LookupsIndex = 4;
static constexpr intptr_t kNumGT25LookupsIndex = 5;
static constexpr intptr_t kNumProbesIndex = 6;
static constexpr intptr_t kHeaderSize = kNumProbesIndex + 1;
#endif
static constexpr intptr_t kMetaDataIndex = kHeaderSize;
static constexpr intptr_t kFirstKeyIndex = kHeaderSize + kMetaDataSize;
static constexpr intptr_t kEntrySize = 1 + kPayloadSize;
intptr_t KeyIndex(intptr_t entry) const {
ASSERT(0 <= entry && entry < NumEntries());
return kFirstKeyIndex + (kEntrySize * entry);
}
intptr_t PayloadIndex(intptr_t entry, intptr_t component) const {
ASSERT(0 <= component && component < kPayloadSize);
return KeyIndex(entry) + 1 + component;
}
ObjectPtr InternalGetKey(intptr_t entry) const {
return WeakSerializationReference::Unwrap(
StorageTraits::At(data_, KeyIndex(entry)));
}
void InternalSetKey(intptr_t entry, const Object& key) const {
StorageTraits::SetAt(data_, KeyIndex(entry), key);
}
intptr_t GetSmiValueAt(intptr_t index) const {
ASSERT(!data_->IsNull());
if (StorageTraits::At(data_, index)->IsHeapObject()) {
Object::Handle(StorageTraits::At(data_, index)).Print();
}
ASSERT(!StorageTraits::At(data_, index)->IsHeapObject());
return Smi::Value(Smi::RawCast(StorageTraits::At(data_, index)));
}
void SetSmiValueAt(intptr_t index, intptr_t value) const {
*smi_handle_ = Smi::New(value);
StorageTraits::SetAt(data_, index, *smi_handle_);
}
void AdjustSmiValueAt(intptr_t index, intptr_t delta) const {
SetSmiValueAt(index, (GetSmiValueAt(index) + delta));
}
Object* key_handle_;
Smi* smi_handle_;
// Exactly one of these is non-null, depending on whether Release was called.
typename StorageTraits::ArrayHandle* data_;
typename StorageTraits::ArrayHandle* released_data_;
friend class HashTables;
template <typename Table, bool kAllCanonicalObjectsAreIncludedIntoSet>
friend class CanonicalSetDeserializationCluster;
template <typename Table,
typename HandleType,
typename PointerType,
bool kAllCanonicalObjectsAreIncludedIntoSet>
friend class CanonicalSetSerializationCluster;
};
// Table with unspecified iteration order. No payload overhead or metadata.
template <typename KeyTraits,
intptr_t kUserPayloadSize,
typename StorageTraits = ArrayStorageTraits>
class UnorderedHashTable
: public HashTable<KeyTraits, kUserPayloadSize, 0, StorageTraits> {
public:
typedef HashTable<KeyTraits, kUserPayloadSize, 0, StorageTraits> BaseTable;
typedef typename StorageTraits::ArrayPtr ArrayPtr;
typedef typename StorageTraits::ArrayHandle ArrayHandle;
static constexpr intptr_t kPayloadSize = kUserPayloadSize;
explicit UnorderedHashTable(ArrayPtr data)
: BaseTable(Thread::Current()->zone(), data) {}
UnorderedHashTable(Zone* zone, ArrayPtr data) : BaseTable(zone, data) {}
UnorderedHashTable(Object* key, Smi* value, ArrayHandle* data)
: BaseTable(key, value, data) {}
// Note: Does not check for concurrent modification.
class Iterator {
public:
explicit Iterator(const UnorderedHashTable* table)
: table_(table), entry_(-1) {}
bool MoveNext() {
while (entry_ < (table_->NumEntries() - 1)) {
++entry_;
if (table_->IsOccupied(entry_)) {
return true;
}
}
return false;
}
intptr_t Current() { return entry_; }
private:
const UnorderedHashTable* table_;
intptr_t entry_;
};
// No extra book-keeping needed for Initialize, InsertKey, DeleteEntry.
};
class HashTables : public AllStatic {
public:
// Allocates and initializes a table.
template <typename Table>
static typename Table::Storage::ArrayPtr New(intptr_t initial_capacity,
Heap::Space space = Heap::kNew) {
auto zone = Thread::Current()->zone();
Table table(
zone,
Table::Storage::New(
zone, Table::ArrayLengthForNumOccupied(initial_capacity), space));
table.Initialize();
return table.Release().ptr();
}
template <typename Table>
static typename Table::Storage::ArrayPtr New(
const typename Table::Storage::ArrayHandle& array) {
Table table(Thread::Current()->zone(), array.ptr());
table.Initialize();
return table.Release().ptr();
}
// Clears 'to' and inserts all elements from 'from', in iteration order.
// The tables must have the same user payload size.
template <typename From, typename To>
static void Copy(const From& from, const To& to) {
COMPILE_ASSERT(From::kPayloadSize == To::kPayloadSize);
to.Initialize();
ASSERT(from.NumOccupied() < to.NumEntries());
typename From::Iterator it(&from);
Object& obj = Object::Handle();
while (it.MoveNext()) {
intptr_t from_entry = it.Current();
obj = from.GetKey(from_entry);
intptr_t to_entry = -1;
const Object& key = obj;
bool present = to.FindKeyOrDeletedOrUnused(key, &to_entry);
ASSERT(!present);
to.InsertKey(to_entry, obj);
for (intptr_t i = 0; i < From::kPayloadSize; ++i) {
obj = from.GetPayload(from_entry, i);
to.UpdatePayload(to_entry, i, obj);
}
}
}
static constexpr double kMaxLoadFactor = 0.71;
template <typename Table>
static void EnsureLoadFactor(double high, const Table& table) {
// We count deleted elements because they take up space just
// like occupied slots in order to cause a rehashing.
const double current = (1 + table.NumOccupied() + table.NumDeleted()) /
static_cast<double>(table.NumEntries());
const bool too_many_deleted = table.NumOccupied() <= table.NumDeleted();
if (current < high && !too_many_deleted) {
return;
}
table.UpdateWeakDeleted();
// Normally we double the size here, but if less than half are occupied
// then it won't grow (this would imply that there were quite a lot of
// deleted slots). We don't want to constantly rehash if we are adding
// and deleting entries at just under the load factor limit, so we may
// double the size even though the number of occupied slots would not
// necessarily justify it. For example if the max load factor is 71% and
// the table is 70% full we will double the size to avoid a rehash every
// time 1% has been added and deleted.
const intptr_t new_capacity = table.NumOccupied() * 2 + 1;
ASSERT(table.NumOccupied() == 0 ||
((1.0 + table.NumOccupied()) /
Utils::RoundUpToPowerOfTwo(new_capacity)) <= high);
Table new_table(New<Table>(new_capacity, // Is rounded up to power of 2.
table.data_->IsOld() ? Heap::kOld : Heap::kNew));
Copy(table, new_table);
Table::Storage::SetHandle(*table.data_, new_table.Release());
NOT_IN_PRODUCT(table.UpdateGrowth(); table.PrintStats();)
}
// Serializes a table by concatenating its entries as an array.
template <typename Table>
static ArrayPtr ToArray(const Table& table, bool include_payload) {
const intptr_t entry_size = include_payload ? (1 + Table::kPayloadSize) : 1;
Array& result = Array::Handle(Array::New(table.NumOccupied() * entry_size));
typename Table::Iterator it(&table);
Object& obj = Object::Handle();
intptr_t result_index = 0;
while (it.MoveNext()) {
intptr_t entry = it.Current();
obj = table.GetKey(entry);
result.SetAt(result_index++, obj);
if (include_payload) {
for (intptr_t i = 0; i < Table::kPayloadSize; ++i) {
obj = table.GetPayload(entry, i);
result.SetAt(result_index++, obj);
}
}
}
return result.ptr();
}
#if defined(DART_PRECOMPILER)
// Replace elements of this set with WeakSerializationReferences.
static void Weaken(const Array& table) {
if (!table.IsNull()) {
Object& element = Object::Handle();
for (intptr_t i = 0; i < table.Length(); i++) {
element = table.At(i);
if (!element.IsSmi()) {
element = WeakSerializationReference::New(
element, HashTableBase::DeletedMarker());
table.SetAt(i, element);
}
}
}
}
#endif
};
template <typename BaseIterTable>
class HashMap : public BaseIterTable {
public:
explicit HashMap(ArrayPtr data)
: BaseIterTable(Thread::Current()->zone(), data) {}
HashMap(Zone* zone, ArrayPtr data) : BaseIterTable(zone, data) {}
HashMap(Object* key, Smi* value, Array* data)
: BaseIterTable(key, value, data) {}
template <typename Key>
ObjectPtr GetOrNull(const Key& key, bool* present = nullptr) const {
intptr_t entry = BaseIterTable::FindKey(key);
if (present != nullptr) {
*present = (entry != -1);
}
return (entry == -1) ? Object::null() : BaseIterTable::GetPayload(entry, 0);
}
template <typename Key>
ObjectPtr GetOrDie(const Key& key) const {
intptr_t entry = BaseIterTable::FindKey(key);
if (entry == -1) UNREACHABLE();
return BaseIterTable::GetPayload(entry, 0);
}
bool UpdateOrInsert(const Object& key, const Object& value) const {
EnsureCapacity();
intptr_t entry = -1;
bool present = BaseIterTable::FindKeyOrDeletedOrUnused(key, &entry);
if (!present) {
BaseIterTable::InsertKey(entry, key);
}
BaseIterTable::UpdatePayload(entry, 0, value);
return present;
}
// Update the value of an existing key. Note that 'key' need not be an Object.
template <typename Key>
void UpdateValue(const Key& key, const Object& value) const {
intptr_t entry = BaseIterTable::FindKey(key);
ASSERT(entry != -1);
BaseIterTable::UpdatePayload(entry, 0, value);
}
// If 'key' is not present, maps it to 'value_if_absent'. Returns the final
// value in the map.
ObjectPtr InsertOrGetValue(const Object& key,
const Object& value_if_absent) const {
EnsureCapacity();
intptr_t entry = -1;
if (!BaseIterTable::FindKeyOrDeletedOrUnused(key, &entry)) {
BaseIterTable::InsertKey(entry, key);
BaseIterTable::UpdatePayload(entry, 0, value_if_absent);
return value_if_absent.ptr();
} else {
return BaseIterTable::GetPayload(entry, 0);
}
}
// Like InsertOrGetValue, but calls NewKey to allocate a key object if needed.
template <typename Key>
ObjectPtr InsertNewOrGetValue(const Key& key,
const Object& value_if_absent) const {
EnsureCapacity();
intptr_t entry = -1;
if (!BaseIterTable::FindKeyOrDeletedOrUnused(key, &entry)) {
BaseIterTable::KeyHandle() =
BaseIterTable::BaseTable::Traits::NewKey(key);
BaseIterTable::InsertKey(entry, BaseIterTable::KeyHandle());
BaseIterTable::UpdatePayload(entry, 0, value_if_absent);
return value_if_absent.ptr();
} else {
return BaseIterTable::GetPayload(entry, 0);
}
}
template <typename Key>
bool Remove(const Key& key) const {
intptr_t entry = BaseIterTable::FindKey(key);
if (entry == -1) {
return false;
} else {
BaseIterTable::DeleteEntry(entry);
return true;
}
}
void Clear() const { BaseIterTable::Initialize(); }
protected:
void EnsureCapacity() const {
HashTables::EnsureLoadFactor(HashTables::kMaxLoadFactor, *this);
}
};
template <typename KeyTraits>
class UnorderedHashMap : public HashMap<UnorderedHashTable<KeyTraits, 1> > {
public:
typedef HashMap<UnorderedHashTable<KeyTraits, 1> > BaseMap;
explicit UnorderedHashMap(ArrayPtr data)
: BaseMap(Thread::Current()->zone(), data) {}
UnorderedHashMap(Zone* zone, ArrayPtr data) : BaseMap(zone, data) {}
UnorderedHashMap(Object* key, Smi* value, Array* data)
: BaseMap(key, value, data) {}
};
template <typename BaseIterTable, typename StorageTraits>
class HashSet : public BaseIterTable {
public:
typedef typename StorageTraits::ArrayPtr ArrayPtr;
typedef typename StorageTraits::ArrayHandle ArrayHandle;
explicit HashSet(ArrayPtr data)
: BaseIterTable(Thread::Current()->zone(), data) {}
HashSet(Zone* zone, ArrayPtr data) : BaseIterTable(zone, data) {}
HashSet(Object* key, Smi* value, ArrayHandle* data)
: BaseIterTable(key, value, data) {}
bool Insert(const Object& key) {
EnsureCapacity();
intptr_t entry = -1;
bool present = BaseIterTable::FindKeyOrDeletedOrUnused(key, &entry);
if (!present) {
BaseIterTable::InsertKey(entry, key);
}
return present;
}
// If 'key' is not present, insert and return it. Else, return the existing
// key in the set (useful for canonicalization).
ObjectPtr InsertOrGet(const Object& key) const {
EnsureCapacity();
intptr_t entry = -1;
if (!BaseIterTable::FindKeyOrDeletedOrUnused(key, &entry)) {
BaseIterTable::InsertKey(entry, key);
return key.ptr();
} else {
return BaseIterTable::GetKey(entry);
}
}
// Like InsertOrGet, but calls NewKey to allocate a key object if needed.
template <typename Key>
ObjectPtr InsertNewOrGet(const Key& key) const {
EnsureCapacity();
intptr_t entry = -1;
if (!BaseIterTable::FindKeyOrDeletedOrUnused(key, &entry)) {
BaseIterTable::KeyHandle() =
BaseIterTable::BaseTable::Traits::NewKey(key);
BaseIterTable::InsertKey(entry, BaseIterTable::KeyHandle());
return BaseIterTable::KeyHandle().ptr();
} else {
return BaseIterTable::GetKey(entry);
}
}
template <typename Key>
ObjectPtr GetOrNull(const Key& key, bool* present = nullptr) const {
intptr_t entry = BaseIterTable::FindKey(key);
if (present != nullptr) {
*present = (entry != -1);
}
return (entry == -1) ? Object::null() : BaseIterTable::GetKey(entry);
}
template <typename Key>
bool Remove(const Key& key) const {
intptr_t entry = BaseIterTable::FindKey(key);
if (entry == -1) {
return false;
} else {
BaseIterTable::DeleteEntry(entry);
return true;
}
}
void Clear() const { BaseIterTable::Initialize(); }
protected:
void EnsureCapacity() const {
HashTables::EnsureLoadFactor(HashTables::kMaxLoadFactor, *this);
}
};
template <typename KeyTraits, typename TableStorageTraits = ArrayStorageTraits>
class UnorderedHashSet
: public HashSet<UnorderedHashTable<KeyTraits, 0, TableStorageTraits>,
TableStorageTraits> {
using UnderlyingTable = UnorderedHashTable<KeyTraits, 0, TableStorageTraits>;
public:
typedef HashSet<UnderlyingTable, TableStorageTraits> BaseSet;
typedef typename TableStorageTraits::ArrayPtr ArrayPtr;
typedef typename TableStorageTraits::ArrayHandle ArrayHandle;
explicit UnorderedHashSet(ArrayPtr data)
: BaseSet(Thread::Current()->zone(), data) {
ASSERT(data != Object::null());
}
UnorderedHashSet(Zone* zone, ArrayPtr data) : BaseSet(zone, data) {}
UnorderedHashSet(Object* key, Smi* value, ArrayHandle* data)
: BaseSet(key, value, data) {}
void Dump() const {
Object& entry = Object::Handle();
for (intptr_t i = 0; i < this->data_->Length(); i++) {
entry = WeakSerializationReference::Unwrap(
TableStorageTraits::At(this->data_, i));
if (entry.ptr() == BaseSet::UnusedMarker().ptr() ||
entry.ptr() == BaseSet::DeletedMarker().ptr() || entry.IsSmi()) {
// empty, deleted, num_used/num_deleted
OS::PrintErr("%" Pd ": %s\n", i, entry.ToCString());
} else {
intptr_t hash = KeyTraits::Hash(entry);
OS::PrintErr("%" Pd ": %" Pd ", %s\n", i, hash, entry.ToCString());
}
}
}
};
typedef UnorderedHashMap<SmiTraits> IntHashMap;
} // namespace dart
#endif // RUNTIME_VM_HASH_TABLE_H_