-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
Copy pathhash_table_test.cc
260 lines (242 loc) · 8.56 KB
/
hash_table_test.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
// Copyright (c) 2014, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#include <algorithm>
#include <cstring>
#include <map>
#include <set>
#include <string>
#include <utility>
#include <vector>
#include "platform/assert.h"
#include "vm/hash_table.h"
#include "vm/unit_test.h"
namespace dart {
// Various ways to look up strings. Uses length as the hash code to make it
// easy to engineer collisions.
class TestTraits {
public:
static const char* Name() { return "TestTraits"; }
static bool ReportStats() { return false; }
static bool IsMatch(const char* key, const Object& obj) {
return String::Cast(obj).Equals(key);
}
static uword Hash(const char* key) { return static_cast<uword>(strlen(key)); }
static bool IsMatch(const Object& a, const Object& b) {
return a.IsString() && b.IsString() &&
String::Cast(a).Equals(String::Cast(b));
}
static uword Hash(const Object& obj) { return String::Cast(obj).Length(); }
static ObjectPtr NewKey(const char* key) { return String::New(key); }
};
template <typename Table>
void Validate(const Table& table) {
// Verify consistency of entry state tracking.
intptr_t num_entries = table.NumEntries();
intptr_t num_unused = table.NumUnused();
intptr_t num_occupied = table.NumOccupied();
intptr_t num_deleted = table.NumDeleted();
for (intptr_t i = 0; i < num_entries; ++i) {
EXPECT_EQ(1, table.IsUnused(i) + table.IsOccupied(i) + table.IsDeleted(i));
num_unused -= table.IsUnused(i);
num_occupied -= table.IsOccupied(i);
num_deleted -= table.IsDeleted(i);
}
EXPECT_EQ(0, num_unused);
EXPECT_EQ(0, num_occupied);
EXPECT_EQ(0, num_deleted);
}
ISOLATE_UNIT_TEST_CASE(HashTable) {
typedef HashTable<TestTraits, 2, 1> Table;
Table table(Thread::Current()->zone(), HashTables::New<Table>(5));
// Ensure that we did get at least 5 entries.
EXPECT_LE(5, table.NumEntries());
EXPECT_EQ(0, table.NumOccupied());
Validate(table);
EXPECT_EQ(-1, table.FindKey("a"));
// Insertion and lookup.
intptr_t a_entry = -1;
EXPECT(!table.FindKeyOrDeletedOrUnused("a", &a_entry));
EXPECT_NE(-1, a_entry);
String& a = String::Handle(String::New("a"));
table.InsertKey(a_entry, a);
EXPECT_EQ(1, table.NumOccupied());
Validate(table);
EXPECT_EQ(a_entry, table.FindKey("a"));
EXPECT_EQ(-1, table.FindKey("b"));
intptr_t a_entry_again = -1;
EXPECT(table.FindKeyOrDeletedOrUnused("a", &a_entry_again));
EXPECT_EQ(a_entry, a_entry_again);
intptr_t b_entry = -1;
EXPECT(!table.FindKeyOrDeletedOrUnused("b", &b_entry));
String& b = String::Handle(String::New("b"));
table.InsertKey(b_entry, b);
EXPECT_EQ(2, table.NumOccupied());
Validate(table);
// Deletion.
table.DeleteEntry(a_entry);
EXPECT_EQ(1, table.NumOccupied());
Validate(table);
EXPECT_EQ(-1, table.FindKey("a"));
EXPECT_EQ(b_entry, table.FindKey("b"));
intptr_t c_entry = -1;
EXPECT(!table.FindKeyOrDeletedOrUnused("c", &c_entry));
String& c = String::Handle(String::New("c"));
table.InsertKey(c_entry, c);
EXPECT_EQ(2, table.NumOccupied());
Validate(table);
EXPECT_EQ(c_entry, table.FindKey("c"));
// Ensure we can actually reach 5 occupied entries (without expansion).
{
intptr_t entry = -1;
EXPECT(!table.FindKeyOrDeletedOrUnused("d", &entry));
String& k = String::Handle(String::New("d"));
table.InsertKey(entry, k);
EXPECT(!table.FindKeyOrDeletedOrUnused("e", &entry));
k = String::New("e");
table.InsertKey(entry, k);
EXPECT(!table.FindKeyOrDeletedOrUnused("f", &entry));
k = String::New("f");
table.InsertKey(entry, k);
EXPECT_EQ(5, table.NumOccupied());
}
table.Release();
}
std::string ToStdString(const String& str) {
EXPECT(str.IsOneByteString());
std::string result;
for (intptr_t i = 0; i < str.Length(); ++i) {
result += static_cast<char>(str.CharAt(i));
}
return result;
}
// Checks that 'expected' and 'actual' are equal sets. If 'ordered' is true,
// it also verifies that their iteration orders match, i.e., that actual's
// insertion order coincides with lexicographic order.
template <typename Set>
void VerifyStringSetsEqual(const std::set<std::string>& expected,
const Set& actual,
bool ordered) {
// Get actual keys in iteration order.
Array& keys = Array::Handle(HashTables::ToArray(actual, true));
// Cardinality must match.
EXPECT_EQ(static_cast<intptr_t>(expected.size()), keys.Length());
std::vector<std::string> expected_vec(expected.begin(), expected.end());
// Check containment.
for (uintptr_t i = 0; i < expected_vec.size(); ++i) {
EXPECT(actual.ContainsKey(expected_vec[i].c_str()));
}
// Equality, including order, if requested.
std::vector<std::string> actual_vec;
String& key = String::Handle();
for (int i = 0; i < keys.Length(); ++i) {
key ^= keys.At(i);
actual_vec.push_back(ToStdString(key));
}
if (!ordered) {
std::sort(actual_vec.begin(), actual_vec.end());
}
EXPECT(
std::equal(actual_vec.begin(), actual_vec.end(), expected_vec.begin()));
}
// Checks that 'expected' and 'actual' are equal maps. If 'ordered' is true,
// it also verifies that their iteration orders match, i.e., that actual's
// insertion order coincides with lexicographic order.
template <typename Map>
void VerifyStringMapsEqual(const std::map<std::string, int>& expected,
const Map& actual,
bool ordered) {
intptr_t expected_size = expected.size();
// Get actual concatenated (key, value) pairs in iteration order.
Array& entries = Array::Handle(HashTables::ToArray(actual, true));
// Cardinality must match.
EXPECT_EQ(expected_size * 2, entries.Length());
std::vector<std::pair<std::string, int> > expected_vec(expected.begin(),
expected.end());
// Check containment.
Smi& value = Smi::Handle();
for (uintptr_t i = 0; i < expected_vec.size(); ++i) {
std::string key = expected_vec[i].first;
EXPECT(actual.ContainsKey(key.c_str()));
value ^= actual.GetOrNull(key.c_str());
EXPECT_EQ(expected_vec[i].second, value.Value());
}
if (!ordered) {
return;
}
// Equality including order.
std::vector<std::string> actual_vec;
String& key = String::Handle();
for (int i = 0; i < expected_size; ++i) {
key ^= entries.At(2 * i);
value ^= entries.At(2 * i + 1);
EXPECT(expected_vec[i].first == ToStdString(key));
EXPECT_EQ(expected_vec[i].second, value.Value());
}
}
template <typename Set>
void TestSet(intptr_t initial_capacity, bool ordered) {
std::set<std::string> expected;
Set actual(HashTables::New<Set>(initial_capacity));
// Insert the following strings twice:
// aaa...aaa (length 26)
// bbb..bbb
// ...
// yy
// z
for (int i = 0; i < 2; ++i) {
for (char ch = 'a'; ch <= 'z'; ++ch) {
std::string key('z' - ch + 1, ch);
expected.insert(key);
bool present = actual.Insert(String::Handle(String::New(key.c_str())));
EXPECT_EQ((i != 0), present);
Validate(actual);
VerifyStringSetsEqual(expected, actual, ordered);
}
}
actual.Clear();
EXPECT_EQ(0, actual.NumOccupied());
actual.Release();
}
template <typename Map>
void TestMap(intptr_t initial_capacity, bool ordered) {
std::map<std::string, int> expected;
Map actual(HashTables::New<Map>(initial_capacity));
// Insert the following (strings, int) mapping:
// aaa...aaa -> 26
// bbb..bbb -> 25
// ...
// yy -> 2
// z -> 1
for (int i = 0; i < 2; ++i) {
for (char ch = 'a'; ch <= 'z'; ++ch) {
int length = 'z' - ch + 1;
std::string key(length, ch);
// Map everything to zero initially, then update to their final values.
int value = length * i;
expected[key] = value;
bool present =
actual.UpdateOrInsert(String::Handle(String::New(key.c_str())),
Smi::Handle(Smi::New(value)));
EXPECT_EQ((i != 0), present);
Validate(actual);
VerifyStringMapsEqual(expected, actual, ordered);
}
}
actual.Clear();
EXPECT_EQ(0, actual.NumOccupied());
actual.Release();
}
ISOLATE_UNIT_TEST_CASE(Sets) {
for (intptr_t initial_capacity = 0; initial_capacity < 32;
++initial_capacity) {
TestSet<UnorderedHashSet<TestTraits> >(initial_capacity, false);
}
}
ISOLATE_UNIT_TEST_CASE(Maps) {
for (intptr_t initial_capacity = 0; initial_capacity < 32;
++initial_capacity) {
TestMap<UnorderedHashMap<TestTraits> >(initial_capacity, false);
}
}
} // namespace dart