-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
Copy pathstack_frame.cc
891 lines (817 loc) · 31.8 KB
/
stack_frame.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
// Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#include "vm/stack_frame.h"
#include "platform/memory_sanitizer.h"
#include "vm/code_descriptors.h"
#include "vm/compiler/runtime_api.h"
#include "vm/heap/become.h"
#include "vm/isolate.h"
#include "vm/object.h"
#include "vm/object_store.h"
#include "vm/os.h"
#include "vm/parser.h"
#include "vm/raw_object.h"
#include "vm/reusable_handles.h"
#include "vm/reverse_pc_lookup_cache.h"
#include "vm/scopes.h"
#include "vm/stub_code.h"
#include "vm/visitor.h"
#if !defined(DART_PRECOMPILED_RUNTIME)
#include "vm/deopt_instructions.h"
#endif // !defined(DART_PRECOMPILED_RUNTIME)
namespace dart {
const FrameLayout invalid_frame_layout = {
/*.first_object_from_fp = */ -1,
/*.last_fixed_object_from_fp = */ -1,
/*.param_end_from_fp = */ -1,
/*.last_param_from_entry_sp = */ -1,
/*.first_local_from_fp = */ -1,
/*.dart_fixed_frame_size = */ -1,
/*.saved_caller_pp_from_fp = */ -1,
/*.saved_caller_fp_from_fp = */ -1,
/*.saved_caller_pc_from_fp = */ -1,
/*.code_from_fp = */ -1,
/*.exit_link_slot_from_entry_fp = */ -1,
};
const FrameLayout default_frame_layout = {
/*.first_object_from_fp = */ kFirstObjectSlotFromFp,
/*.last_fixed_object_from_fp = */ kLastFixedObjectSlotFromFp,
/*.param_end_from_fp = */ kParamEndSlotFromFp,
/*.last_param_from_entry_sp = */ kLastParamSlotFromEntrySp,
/*.first_local_from_fp = */ kFirstLocalSlotFromFp,
/*.dart_fixed_frame_size = */ kDartFrameFixedSize,
/*.saved_caller_pp_from_fp = */ kSavedCallerPpSlotFromFp,
/*.saved_caller_fp_from_fp = */ kSavedCallerFpSlotFromFp,
/*.saved_caller_pc_from_fp = */ kSavedCallerPcSlotFromFp,
/*.code_from_fp = */ kPcMarkerSlotFromFp,
/*.exit_link_slot_from_entry_fp = */ kExitLinkSlotFromEntryFp,
};
const FrameLayout bare_instructions_frame_layout = {
/*.first_object_from_pc =*/kFirstObjectSlotFromFp, // No saved PP slot.
/*.last_fixed_object_from_fp = */ kLastFixedObjectSlotFromFp +
2, // No saved CODE, PP slots
/*.param_end_from_fp = */ kParamEndSlotFromFp,
/*.last_param_from_entry_sp = */ kLastParamSlotFromEntrySp,
/*.first_local_from_fp =*/kFirstLocalSlotFromFp +
2, // No saved CODE, PP slots.
/*.dart_fixed_frame_size =*/kDartFrameFixedSize -
2, // No saved CODE, PP slots.
/*.saved_caller_pp_from_fp = */ 0, // No saved PP slot.
/*.saved_caller_fp_from_fp = */ kSavedCallerFpSlotFromFp,
/*.saved_caller_pc_from_fp = */ kSavedCallerPcSlotFromFp,
/*.code_from_fp = */ 0, // No saved CODE
/*.exit_link_slot_from_entry_fp = */ kExitLinkSlotFromEntryFp,
};
namespace compiler {
namespace target {
FrameLayout frame_layout = invalid_frame_layout;
}
} // namespace compiler
FrameLayout runtime_frame_layout = invalid_frame_layout;
intptr_t FrameLayout::FrameSlotForVariable(
const LocalVariable* variable) const {
ASSERT(!variable->is_captured());
return this->FrameSlotForVariableIndex(variable->index().value());
}
intptr_t FrameLayout::FrameSlotForVariableIndex(intptr_t variable_index) const {
// Variable indices are:
// [1, 2, ..., M] for the M parameters.
// [0, -1, -2, ... -(N-1)] for the N [LocalVariable]s
// See (runtime/vm/scopes.h)
return variable_index <= 0 ? (variable_index + first_local_from_fp)
: (variable_index + param_end_from_fp);
}
void FrameLayout::Init() {
// By default we use frames with CODE_REG/PP in the frame.
compiler::target::frame_layout = default_frame_layout;
runtime_frame_layout = default_frame_layout;
if (FLAG_precompiled_mode) {
compiler::target::frame_layout = bare_instructions_frame_layout;
}
#if defined(DART_PRECOMPILED_RUNTIME)
if (FLAG_precompiled_mode) {
compiler::target::frame_layout = invalid_frame_layout;
runtime_frame_layout = bare_instructions_frame_layout;
}
#endif
}
bool StackFrame::IsBareInstructionsDartFrame() const {
if (!FLAG_precompiled_mode) {
return false;
}
NoSafepointScope no_safepoint;
Code code;
code = ReversePc::Lookup(this->isolate_group(), pc(),
/*is_return_address=*/true);
if (!code.IsNull()) {
auto const cid = code.OwnerClassId();
ASSERT(cid == kNullCid || cid == kClassCid || cid == kFunctionCid);
return cid == kFunctionCid;
}
return false;
}
bool StackFrame::IsBareInstructionsStubFrame() const {
if (!FLAG_precompiled_mode) {
return false;
}
NoSafepointScope no_safepoint;
Code code;
code = ReversePc::Lookup(this->isolate_group(), pc(),
/*is_return_address=*/true);
if (!code.IsNull()) {
auto const cid = code.OwnerClassId();
ASSERT(cid == kNullCid || cid == kClassCid || cid == kFunctionCid);
return cid == kNullCid || cid == kClassCid;
}
return false;
}
bool StackFrame::IsStubFrame() const {
if (is_interpreted()) {
return false;
}
if (FLAG_precompiled_mode) {
return IsBareInstructionsStubFrame();
}
ASSERT(!(IsEntryFrame() || IsExitFrame()));
#if !defined(DART_HOST_OS_WINDOWS) && !defined(DART_HOST_OS_FUCHSIA)
// On Windows and Fuchsia, the profiler calls this from a separate thread
// where Thread::Current() is nullptr, so we cannot create a NoSafepointScope.
NoSafepointScope no_safepoint;
#endif
CodePtr code = GetCodeObject();
ASSERT(code != Object::null());
auto const cid = Code::OwnerClassIdOf(code);
ASSERT(cid == kNullCid || cid == kClassCid || cid == kFunctionCid);
return cid == kNullCid || cid == kClassCid;
}
const char* StackFrame::ToCString() const {
ASSERT(thread_ == Thread::Current());
Zone* zone = Thread::Current()->zone();
#if defined(DART_DYNAMIC_MODULES)
if (is_interpreted()) {
const Bytecode& bytecode = Bytecode::Handle(zone, LookupDartBytecode());
const char* name = bytecode.IsNull() ? "Cannot find bytecode object"
: bytecode.FullyQualifiedName();
return zone->PrintToString(" pc 0x%" Pp " fp 0x%" Pp " sp 0x%" Pp " %s",
pc(), fp(), sp(), name);
}
#endif // defined(DART_DYNAMIC_MODULES)
const Code& code = Code::Handle(zone, GetCodeObject());
const char* name =
code.IsNull()
? "Cannot find code object"
: code.QualifiedName(NameFormattingParams(Object::kInternalName));
return zone->PrintToString(" pc 0x%" Pp " fp 0x%" Pp " sp 0x%" Pp " %s",
pc(), fp(), sp(), name);
}
void ExitFrame::VisitObjectPointers(ObjectPointerVisitor* visitor) {
ASSERT(visitor != nullptr);
// Visit pc marker and saved pool pointer, or, for interpreted frame, code
// object and function object.
ObjectPtr* last_fixed =
reinterpret_cast<ObjectPtr*>(fp()) +
(is_interpreted() ? kKBCLastFixedObjectSlotFromFp
: runtime_frame_layout.first_object_from_fp);
ObjectPtr* first_fixed =
reinterpret_cast<ObjectPtr*>(fp()) +
(is_interpreted() ? kKBCFirstObjectSlotFromFp
: runtime_frame_layout.last_fixed_object_from_fp);
if (first_fixed <= last_fixed) {
visitor->VisitPointers(first_fixed, last_fixed);
} else {
ASSERT(runtime_frame_layout.first_object_from_fp ==
runtime_frame_layout.first_local_from_fp);
}
}
void EntryFrame::VisitObjectPointers(ObjectPointerVisitor* visitor) {
ASSERT(visitor != nullptr);
// Visit objects between SP and (FP - callee_save_area).
ObjectPtr* first = is_interpreted() ? reinterpret_cast<ObjectPtr*>(fp()) +
kKBCSavedArgDescSlotFromEntryFp
: reinterpret_cast<ObjectPtr*>(sp());
ObjectPtr* last = is_interpreted() ? reinterpret_cast<ObjectPtr*>(sp())
: reinterpret_cast<ObjectPtr*>(fp()) +
kExitLinkSlotFromEntryFp - 1;
// There may not be any pointer to visit; in this case, first > last.
visitor->VisitPointers(first, last);
}
void StackFrame::VisitObjectPointers(ObjectPointerVisitor* visitor) {
ASSERT(visitor != nullptr);
// NOTE: This code runs while GC is in progress and runs within
// a NoHandleScope block. Hence it is not ok to use regular Zone or
// Scope handles. We use direct stack handles, the raw pointers in
// these handles are not traversed. The use of handles is mainly to
// be able to reuse the handle based code and avoid having to add
// helper functions to the raw object interface.
NoSafepointScope no_safepoint;
Code code;
CompressedStackMaps::RawPayloadHandle maps;
CompressedStackMaps::RawPayloadHandle global_table;
uword code_start;
if (FLAG_precompiled_mode) {
const UntaggedCompressedStackMaps::Payload* global_table_payload;
maps = ReversePc::FindStackMap(isolate_group(), pc(),
/*is_return_address=*/true, &code_start,
&global_table_payload);
global_table = global_table_payload;
} else {
ObjectPtr pc_marker = *(reinterpret_cast<ObjectPtr*>(
fp() + ((is_interpreted() ? kKBCPcMarkerSlotFromFp
: runtime_frame_layout.code_from_fp) *
kWordSize)));
// May forward raw code. Note we don't just visit the pc marker slot first
// because the visitor's forwarding might not be idempotent.
visitor->VisitPointer(&pc_marker);
if (pc_marker->GetClassId() == kCodeCid) {
code ^= pc_marker;
code_start = code.PayloadStart();
ASSERT(code.compressed_stackmaps() != CompressedStackMaps::null());
maps = code.compressed_stackmaps();
if (maps.UsesGlobalTable()) {
global_table =
isolate_group()->object_store()->canonicalized_stack_map_entries();
}
} else {
ASSERT(pc_marker == Object::null() ||
(is_interpreted() && (!pc_marker->IsHeapObject() ||
(pc_marker->GetClassId() == kBytecodeCid))));
}
}
if (!maps.IsNull()) {
// Optimized frames have a stack map. We need to visit the frame based
// on the stack map.
CompressedStackMaps::Iterator<CompressedStackMaps::RawPayloadHandle> it(
maps, global_table);
const uint32_t pc_offset = pc() - code_start;
if (it.Find(pc_offset)) {
if (is_interpreted()) {
UNIMPLEMENTED();
}
ObjectPtr* first = reinterpret_cast<ObjectPtr*>(sp());
ObjectPtr* last = reinterpret_cast<ObjectPtr*>(
fp() + (runtime_frame_layout.first_local_from_fp * kWordSize));
// A stack map is present in the code object, use the stack map to
// visit frame slots which are marked as having objects.
//
// The layout of the frame is (lower addresses to the right):
// | spill slots | outgoing arguments | saved registers | slow-path args |
// |XXXXXXXXXXXXX|--------------------|XXXXXXXXXXXXXXXXX|XXXXXXXXXXXXXXXX|
//
// The spill slots and any saved registers are described in the stack
// map. The outgoing arguments are assumed to be tagged; the number
// of outgoing arguments is not explicitly tracked.
// Spill slots are at the 'bottom' of the frame.
intptr_t spill_slot_count = it.SpillSlotBitCount();
for (intptr_t bit = 0; bit < spill_slot_count; ++bit) {
if (it.IsObject(bit)) {
visitor->VisitPointer(last);
}
--last;
}
// The live registers at the 'top' of the frame comprise the rest of the
// stack map.
for (intptr_t bit = it.Length() - 1; bit >= spill_slot_count; --bit) {
if (it.IsObject(bit)) {
visitor->VisitPointer(first);
}
++first;
}
// The last slot can be one slot (but not more) past the last slot
// in the case that all slots were covered by the stack map.
ASSERT((last + 1) >= first);
visitor->VisitPointers(first, last);
// Now visit other slots which might be part of the calling convention.
first = reinterpret_cast<ObjectPtr*>(
fp() + ((runtime_frame_layout.first_local_from_fp + 1) * kWordSize));
last = reinterpret_cast<ObjectPtr*>(
fp() + (runtime_frame_layout.first_object_from_fp * kWordSize));
visitor->VisitPointers(first, last);
return;
}
// If we are missing a stack map for a given PC offset, this must either be
// unoptimized code, code with no stack map information at all, or the entry
// to an osr function. In each of these cases, all stack slots contain
// tagged pointers, so fall through.
#if defined(DEBUG)
if (FLAG_precompiled_mode) {
ASSERT(IsStubFrame());
} else {
ASSERT(!code.is_optimized() ||
(pc_offset == code.EntryPoint() - code.PayloadStart()));
}
#endif // defined(DEBUG)
}
// For normal unoptimized Dart frames and Stub frames each slot
// between the first and last included are tagged objects.
if (is_interpreted()) {
// Do not visit caller's pc or caller's fp.
ObjectPtr* first =
reinterpret_cast<ObjectPtr*>(fp()) + kKBCFirstObjectSlotFromFp;
ObjectPtr* last =
reinterpret_cast<ObjectPtr*>(fp()) + kKBCLastFixedObjectSlotFromFp;
visitor->VisitPointers(first, last);
}
ObjectPtr* first =
reinterpret_cast<ObjectPtr*>(is_interpreted() ? fp() : sp());
ObjectPtr* last = reinterpret_cast<ObjectPtr*>(
is_interpreted()
? sp()
: fp() + (runtime_frame_layout.first_object_from_fp * kWordSize));
visitor->VisitPointers(first, last);
}
FunctionPtr StackFrame::LookupDartFunction() const {
if (is_interpreted()) {
ObjectPtr result = *(reinterpret_cast<FunctionPtr*>(
fp() + kKBCFunctionSlotFromFp * kWordSize));
ASSERT((result == Object::null()) ||
(result->GetClassId() == kFunctionCid));
return static_cast<FunctionPtr>(result);
}
const Code& code = Code::Handle(LookupDartCode());
if (!code.IsNull()) {
const Object& owner = Object::Handle(code.owner());
if (owner.IsFunction()) {
return Function::Cast(owner).ptr();
}
}
return Function::null();
}
CodePtr StackFrame::LookupDartCode() const {
// We add a no gc scope to ensure that the code below does not trigger
// a GC as we are handling raw object references here. It is possible
// that the code is called while a GC is in progress, that is ok.
#if !defined(DART_HOST_OS_WINDOWS) && !defined(DART_HOST_OS_FUCHSIA)
// On Windows and Fuchsia, the profiler calls this from a separate thread
// where Thread::Current() is nullptr, so we cannot create a NoSafepointScope.
NoSafepointScope no_safepoint;
#endif
CodePtr code = GetCodeObject();
if ((code != Code::null()) && Code::OwnerClassIdOf(code) == kFunctionCid) {
return code;
}
return Code::null();
}
CodePtr StackFrame::GetCodeObject() const {
ASSERT(!is_interpreted());
#if defined(DART_PRECOMPILED_RUNTIME)
if (FLAG_precompiled_mode) {
if (pc() == 0) {
return Code::null();
}
NoSafepointScope no_safepoint;
CodePtr code = ReversePc::Lookup(isolate_group(), pc(),
/*is_return_address=*/true);
ASSERT(code != Code::null());
return code;
}
#endif // defined(DART_PRECOMPILED_RUNTIME)
ObjectPtr pc_marker = *(reinterpret_cast<ObjectPtr*>(
fp() + runtime_frame_layout.code_from_fp * kWordSize));
ASSERT((pc_marker == Object::null()) ||
(pc_marker->GetClassId() == kCodeCid));
return static_cast<CodePtr>(pc_marker);
}
BytecodePtr StackFrame::LookupDartBytecode() const {
// We add a no gc scope to ensure that the code below does not trigger
// a GC as we are handling raw object references here. It is possible
// that the code is called while a GC is in progress, that is ok.
#if !defined(HOST_OS_WINDOWS) && !defined(HOST_OS_FUCHSIA)
// On Windows and Fuchsia, the profiler calls this from a separate thread
// where Thread::Current() is NULL, so we cannot create a NoSafepointScope.
NoSafepointScope no_safepoint;
#endif
return GetBytecodeObject();
}
BytecodePtr StackFrame::GetBytecodeObject() const {
ASSERT(is_interpreted());
ObjectPtr pc_marker = *(
reinterpret_cast<ObjectPtr*>(fp() + kKBCPcMarkerSlotFromFp * kWordSize));
ASSERT((pc_marker == Object::null()) ||
(pc_marker->GetClassId() == kBytecodeCid));
return static_cast<BytecodePtr>(pc_marker);
}
bool StackFrame::FindExceptionHandler(Thread* thread,
uword* handler_pc,
bool* needs_stacktrace,
bool* has_catch_all,
bool* is_optimized) const {
REUSABLE_CODE_HANDLESCOPE(thread);
Code& code = reused_code_handle.Handle();
REUSABLE_BYTECODE_HANDLESCOPE(thread);
Bytecode& bytecode = reused_bytecode_handle.Handle();
REUSABLE_EXCEPTION_HANDLERS_HANDLESCOPE(thread);
ExceptionHandlers& handlers = reused_exception_handlers_handle.Handle();
REUSABLE_PC_DESCRIPTORS_HANDLESCOPE(thread);
PcDescriptors& descriptors = reused_pc_descriptors_handle.Handle();
uword start;
if (is_interpreted()) {
bytecode = LookupDartBytecode();
ASSERT(!bytecode.IsNull());
start = bytecode.PayloadStart();
handlers = bytecode.exception_handlers();
} else {
code = LookupDartCode();
if (code.IsNull()) {
return false; // Stub frames do not have exception handlers.
}
start = code.PayloadStart();
handlers = code.exception_handlers();
descriptors = code.pc_descriptors();
*is_optimized = code.is_optimized();
}
HandlerInfoCache* cache = thread->isolate()->handler_info_cache();
ExceptionHandlerInfo* info = cache->Lookup(pc());
if (info != nullptr) {
*handler_pc = start + info->handler_pc_offset;
*needs_stacktrace = (info->needs_stacktrace != 0);
*has_catch_all = (info->has_catch_all != 0);
return true;
}
intptr_t try_index = -1;
if (handlers.num_entries() != 0) {
if (is_interpreted()) {
try_index = bytecode.GetTryIndexAtPc(pc());
} else {
uword pc_offset = pc() - code.PayloadStart();
PcDescriptors::Iterator iter(descriptors,
UntaggedPcDescriptors::kAnyKind);
while (iter.MoveNext()) {
const intptr_t current_try_index = iter.TryIndex();
if ((iter.PcOffset() == pc_offset) && (current_try_index != -1)) {
try_index = current_try_index;
break;
}
}
}
}
if (try_index == -1) {
if (handlers.has_async_handler()) {
*handler_pc = StubCode::AsyncExceptionHandler().EntryPoint();
*needs_stacktrace = true;
*has_catch_all = true;
return true;
}
return false;
}
ExceptionHandlerInfo handler_info;
handlers.GetHandlerInfo(try_index, &handler_info);
*handler_pc = start + handler_info.handler_pc_offset;
*needs_stacktrace = (handler_info.needs_stacktrace != 0);
*has_catch_all = (handler_info.has_catch_all != 0);
cache->Insert(pc(), handler_info);
return true;
}
TokenPosition StackFrame::GetTokenPos() const {
if (is_interpreted()) {
const Bytecode& bytecode = Bytecode::Handle(LookupDartBytecode());
if (bytecode.IsNull()) {
return TokenPosition::kNoSource; // Stub frames do not have token_pos.
}
return bytecode.GetTokenIndexOfPC(pc());
}
const Code& code = Code::Handle(LookupDartCode());
if (code.IsNull()) {
return TokenPosition::kNoSource; // Stub frames do not have token_pos.
}
uword pc_offset = pc() - code.PayloadStart();
const PcDescriptors& descriptors =
PcDescriptors::Handle(code.pc_descriptors());
ASSERT(!descriptors.IsNull());
PcDescriptors::Iterator iter(descriptors, UntaggedPcDescriptors::kAnyKind);
while (iter.MoveNext()) {
if (iter.PcOffset() == pc_offset) {
return TokenPosition(iter.TokenPos());
}
}
return TokenPosition::kNoSource;
}
bool StackFrame::IsValid() const {
if (IsEntryFrame() || IsExitFrame() || IsStubFrame()) {
return true;
}
if (is_interpreted()) {
return (LookupDartBytecode() != Bytecode::null());
}
return (LookupDartCode() != Code::null());
}
void StackFrame::DumpCurrentTrace() {
StackFrameIterator frames(ValidationPolicy::kDontValidateFrames,
Thread::Current(),
StackFrameIterator::kNoCrossThreadIteration);
StackFrame* frame = frames.NextFrame();
while (frame != nullptr) {
OS::PrintErr("%s\n", frame->ToCString());
frame = frames.NextFrame();
}
}
void StackFrameIterator::SetupLastExitFrameData() {
ASSERT(thread_ != nullptr);
uword exit_marker = thread_->top_exit_frame_info();
frames_.fp_ = exit_marker;
frames_.sp_ = 0;
frames_.pc_ = 0;
#if defined(DART_DYNAMIC_MODULES)
frames_.CheckIfInterpreted(exit_marker);
#endif
frames_.Unpoison();
}
void StackFrameIterator::SetupNextExitFrameData() {
ASSERT(entry_.fp() != 0);
uword exit_address =
entry_.fp() + ((entry_.is_interpreted() ? kKBCExitLinkSlotFromEntryFp
: kExitLinkSlotFromEntryFp) *
kWordSize);
uword exit_marker = *reinterpret_cast<uword*>(exit_address);
frames_.fp_ = exit_marker;
frames_.sp_ = 0;
frames_.pc_ = 0;
#if defined(DART_DYNAMIC_MODULES)
frames_.CheckIfInterpreted(exit_marker);
#endif
frames_.Unpoison();
}
StackFrameIterator::StackFrameIterator(ValidationPolicy validation_policy,
Thread* thread,
CrossThreadPolicy cross_thread_policy)
: validate_(validation_policy == ValidationPolicy::kValidateFrames),
entry_(thread),
exit_(thread),
frames_(thread),
current_frame_(nullptr),
thread_(thread) {
ASSERT(cross_thread_policy == kAllowCrossThreadIteration ||
thread_ == Thread::Current());
SetupLastExitFrameData(); // Setup data for last exit frame.
}
StackFrameIterator::StackFrameIterator(uword last_fp,
ValidationPolicy validation_policy,
Thread* thread,
CrossThreadPolicy cross_thread_policy)
: validate_(validation_policy == ValidationPolicy::kValidateFrames),
entry_(thread),
exit_(thread),
frames_(thread),
current_frame_(nullptr),
thread_(thread) {
ASSERT(cross_thread_policy == kAllowCrossThreadIteration ||
thread_ == Thread::Current());
frames_.fp_ = last_fp;
frames_.sp_ = 0;
frames_.pc_ = 0;
#if defined(DART_DYNAMIC_MODULES)
frames_.CheckIfInterpreted(last_fp);
#endif
frames_.Unpoison();
}
StackFrameIterator::StackFrameIterator(uword fp,
uword sp,
uword pc,
ValidationPolicy validation_policy,
Thread* thread,
CrossThreadPolicy cross_thread_policy)
: validate_(validation_policy == ValidationPolicy::kValidateFrames),
entry_(thread),
exit_(thread),
frames_(thread),
current_frame_(nullptr),
thread_(thread) {
ASSERT(cross_thread_policy == kAllowCrossThreadIteration ||
thread_ == Thread::Current());
frames_.fp_ = fp;
frames_.sp_ = sp;
frames_.pc_ = pc;
#if defined(DART_DYNAMIC_MODULES)
frames_.CheckIfInterpreted(fp);
#endif
frames_.Unpoison();
}
StackFrameIterator::StackFrameIterator(const StackFrameIterator& orig)
: validate_(orig.validate_),
entry_(orig.thread_),
exit_(orig.thread_),
frames_(orig.thread_),
current_frame_(nullptr),
thread_(orig.thread_) {
frames_.fp_ = orig.frames_.fp_;
frames_.sp_ = orig.frames_.sp_;
frames_.pc_ = orig.frames_.pc_;
frames_.Unpoison();
}
StackFrame* StackFrameIterator::NextFrame() {
// When we are at the start of iteration after having created an
// iterator object, current_frame_ will be nullptr as we haven't seen
// any frames yet (unless we start iterating in the simulator from a given
// triplet of fp, sp, and pc). At this point, if NextFrame is called, it tries
// to set up the next exit frame by reading the top_exit_frame_info
// from the isolate. If we do not have any dart invocations yet,
// top_exit_frame_info will be 0 and so we would return nullptr.
// current_frame_ will also be nullptr, when we are at the end of having
// iterated through all the frames. If NextFrame is called at this
// point, we will try and set up the next exit frame, but since we are
// at the end of the iteration, fp_ will be 0 and we would return nullptr.
if (current_frame_ == nullptr) {
if (!HasNextFrame()) {
return nullptr;
}
if (frames_.pc_ == 0) {
// Iteration starts from an exit frame given by its fp.
current_frame_ = NextExitFrame();
} else if (*(reinterpret_cast<uword*>(
frames_.fp_ +
((frames_.is_interpreted() ? kKBCSavedCallerFpSlotFromFp
: kSavedCallerFpSlotFromFp) *
kWordSize))) == 0) {
// Iteration starts from an entry frame given by its fp, sp, and pc.
current_frame_ = NextEntryFrame();
} else {
// Iteration starts from a Dart or stub frame given by its fp, sp, and pc.
current_frame_ = frames_.NextFrame(validate_);
}
return current_frame_;
}
ASSERT(!validate_ || current_frame_->IsValid());
if (current_frame_->IsEntryFrame()) {
if (HasNextFrame()) { // We have another chained block.
current_frame_ = NextExitFrame();
return current_frame_;
}
current_frame_ = nullptr; // No more frames.
return current_frame_;
}
ASSERT(!validate_ || current_frame_->IsExitFrame() ||
current_frame_->IsDartFrame(validate_) ||
current_frame_->IsStubFrame());
// Consume dart/stub frames using StackFrameIterator::FrameSetIterator
// until we are out of dart/stub frames at which point we return the
// corresponding entry frame for that set of dart/stub frames.
current_frame_ =
(frames_.HasNext()) ? frames_.NextFrame(validate_) : NextEntryFrame();
return current_frame_;
}
#if defined(DART_DYNAMIC_MODULES)
void StackFrameIterator::FrameSetIterator::CheckIfInterpreted(
uword exit_marker) {
Interpreter* interpreter = thread_->interpreter();
is_interpreted_ =
(interpreter != nullptr) && interpreter->HasFrame(exit_marker);
}
#endif // defined(DART_DYNAMIC_MODULES)
// Tell MemorySanitizer that generated code initializes part of the stack.
void StackFrameIterator::FrameSetIterator::Unpoison() {
// When using a simulator, all writes to the stack happened from MSAN
// instrumented C++, so there is nothing to unpoison. Additionally,
// fp_ will be somewhere in the simulator's stack instead of the OSThread's
// stack.
#if !defined(USING_SIMULATOR)
if (fp_ == 0) return;
// Note that Thread::os_thread_ is cleared when the thread is descheduled.
ASSERT(is_interpreted() || (thread_->os_thread() == nullptr) ||
((thread_->os_thread()->stack_limit() < fp_) &&
(thread_->os_thread()->stack_base() > fp_)));
uword lower;
if (sp_ == 0) {
// Exit frame: guess sp.
lower = fp_ - kDartFrameFixedSize * kWordSize;
} else {
lower = sp_;
}
uword upper = fp_ + kSavedCallerPcSlotFromFp * kWordSize;
// Both lower and upper are inclusive, so we add one word when computing size.
MSAN_UNPOISON(reinterpret_cast<void*>(lower), upper - lower + kWordSize);
#endif // !defined(USING_SIMULATOR)
}
StackFrame* StackFrameIterator::FrameSetIterator::NextFrame(bool validate) {
StackFrame* frame;
ASSERT(HasNext());
frame = &stack_frame_;
frame->sp_ = sp_;
frame->fp_ = fp_;
frame->pc_ = pc_;
#if defined(DART_DYNAMIC_MODULES)
frame->is_interpreted_ = is_interpreted();
#endif
sp_ = frame->GetCallerSp();
fp_ = frame->GetCallerFp();
pc_ = frame->GetCallerPc();
Unpoison();
ASSERT(is_interpreted() == frame->is_interpreted());
ASSERT(!validate || frame->IsValid());
return frame;
}
ExitFrame* StackFrameIterator::NextExitFrame() {
exit_.sp_ = frames_.sp_;
exit_.fp_ = frames_.fp_;
exit_.pc_ = frames_.pc_;
#if defined(DART_DYNAMIC_MODULES)
exit_.is_interpreted_ = frames_.is_interpreted();
#endif
frames_.sp_ = exit_.GetCallerSp();
frames_.fp_ = exit_.GetCallerFp();
frames_.pc_ = exit_.GetCallerPc();
frames_.Unpoison();
ASSERT(frames_.is_interpreted() == exit_.is_interpreted());
ASSERT(!validate_ || exit_.IsValid());
return &exit_;
}
EntryFrame* StackFrameIterator::NextEntryFrame() {
ASSERT(!frames_.HasNext());
entry_.sp_ = frames_.sp_;
entry_.fp_ = frames_.fp_;
entry_.pc_ = frames_.pc_;
#if defined(DART_DYNAMIC_MODULES)
entry_.is_interpreted_ = frames_.is_interpreted();
#endif
SetupNextExitFrameData(); // Setup data for next exit frame in chain.
ASSERT(!validate_ || entry_.IsValid());
return &entry_;
}
InlinedFunctionsIterator::InlinedFunctionsIterator(const Code& code, uword pc)
: index_(0),
num_materializations_(0),
dest_frame_size_(0),
code_(Code::Handle(code.ptr())),
deopt_info_(TypedData::Handle()),
function_(Function::Handle()),
pc_(pc),
deopt_instructions_(),
object_table_(ObjectPool::Handle()) {
ASSERT(code_.is_optimized());
ASSERT(pc_ != 0);
ASSERT(code.ContainsInstructionAt(pc));
#if defined(DART_PRECOMPILED_RUNTIME)
ASSERT(deopt_info_.IsNull());
function_ = code_.function();
#else
ICData::DeoptReasonId deopt_reason = ICData::kDeoptUnknown;
uint32_t deopt_flags = 0;
deopt_info_ = code_.GetDeoptInfoAtPc(pc, &deopt_reason, &deopt_flags);
if (deopt_info_.IsNull()) {
// This is the case when a call without deopt info in optimized code
// throws an exception. (e.g. in the parameter copying prologue).
// In that case there won't be any inlined frames.
function_ = code_.function();
} else {
// Unpack deopt info into instructions (translate away suffixes).
const Array& deopt_table = Array::Handle(code_.deopt_info_array());
ASSERT(!deopt_table.IsNull());
DeoptInfo::Unpack(deopt_table, deopt_info_, &deopt_instructions_);
num_materializations_ = DeoptInfo::NumMaterializations(deopt_instructions_);
dest_frame_size_ = DeoptInfo::FrameSize(deopt_info_);
object_table_ = code_.GetObjectPool();
Advance();
}
#endif // defined(DART_PRECOMPILED_RUNTIME)
}
void InlinedFunctionsIterator::Advance() {
// Iterate over the deopt instructions and determine the inlined
// functions if any and iterate over them.
ASSERT(!Done());
#if defined(DART_PRECOMPILED_RUNTIME)
ASSERT(deopt_info_.IsNull());
SetDone();
return;
#else
if (deopt_info_.IsNull()) {
SetDone();
return;
}
ASSERT(deopt_instructions_.length() != 0);
while (index_ < deopt_instructions_.length()) {
DeoptInstr* deopt_instr = deopt_instructions_[index_++];
if (deopt_instr->kind() == DeoptInstr::kRetAddress) {
pc_ = DeoptInstr::GetRetAddress(deopt_instr, object_table_, &code_);
function_ = code_.function();
return;
}
}
SetDone();
#endif // defined(DART_PRECOMPILED_RUNTIME)
}
#if !defined(DART_PRECOMPILED_RUNTIME)
// Finds the potential offset for the current function's FP if the
// current frame were to be deoptimized.
intptr_t InlinedFunctionsIterator::GetDeoptFpOffset() const {
ASSERT(deopt_instructions_.length() != 0);
for (intptr_t index = index_; index < deopt_instructions_.length(); index++) {
DeoptInstr* deopt_instr = deopt_instructions_[index];
if (deopt_instr->kind() == DeoptInstr::kCallerFp) {
return index - num_materializations_ - kSavedCallerFpSlotFromFp;
}
}
UNREACHABLE();
return 0;
}
#endif // !defined(DART_PRECOMPILED_RUNTIME)
#if defined(DEBUG)
void ValidateFrames() {
StackFrameIterator frames(ValidationPolicy::kValidateFrames,
Thread::Current(),
StackFrameIterator::kNoCrossThreadIteration);
StackFrame* frame = frames.NextFrame();
while (frame != nullptr) {
frame = frames.NextFrame();
}
}
#endif
} // namespace dart