-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
Copy pathzone.cc
367 lines (320 loc) · 11.1 KB
/
zone.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
// Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#include "vm/zone.h"
#include "platform/assert.h"
#include "platform/leak_sanitizer.h"
#include "platform/utils.h"
#include "vm/dart_api_state.h"
#include "vm/flags.h"
#include "vm/handles_impl.h"
#include "vm/heap/heap.h"
#include "vm/os.h"
#include "vm/virtual_memory.h"
namespace dart {
RelaxedAtomic<intptr_t> Zone::total_size_ = {0};
// Zone segments represent chunks of memory: They have starting
// address encoded in the this pointer and a size in bytes. They are
// chained together to form the backing storage for an expanding zone.
class Zone::Segment {
public:
Segment* next() const { return next_; }
intptr_t size() const { return size_; }
VirtualMemory* memory() const { return memory_; }
uword start() { return address(sizeof(Segment)); }
uword end() { return address(size_); }
// Allocate or delete individual segments.
static Segment* New(intptr_t size, Segment* next);
static void DeleteSegmentList(Segment* segment);
private:
Segment* next_;
intptr_t size_;
VirtualMemory* memory_;
void* alignment_;
// Computes the address of the nth byte in this segment.
uword address(intptr_t n) { return reinterpret_cast<uword>(this) + n; }
DISALLOW_IMPLICIT_CONSTRUCTORS(Segment);
};
// tcmalloc and jemalloc have both been observed to hold onto lots of free'd
// zone segments (jemalloc to the point of causing OOM), so instead of using
// malloc to allocate segments, we allocate directly from mmap/zx_vmo_create/
// VirtualAlloc, and cache a small number of the normal sized segments.
static constexpr intptr_t kSegmentCacheCapacity = 16; // 1 MB of Segments
static Mutex* segment_cache_mutex = nullptr;
static VirtualMemory* segment_cache[kSegmentCacheCapacity] = {nullptr};
static intptr_t segment_cache_size = 0;
void Zone::Init() {
ASSERT(segment_cache_mutex == nullptr);
segment_cache_mutex = new Mutex();
}
void Zone::Cleanup() {
ClearCache();
delete segment_cache_mutex;
segment_cache_mutex = nullptr;
}
void Zone::ClearCache() {
MutexLocker ml(segment_cache_mutex);
ASSERT(segment_cache_size >= 0);
ASSERT(segment_cache_size <= kSegmentCacheCapacity);
while (segment_cache_size > 0) {
delete segment_cache[--segment_cache_size];
}
}
Zone::Segment* Zone::Segment::New(intptr_t size, Zone::Segment* next) {
size = Utils::RoundUp(size, VirtualMemory::PageSize());
VirtualMemory* memory = nullptr;
if (size == kSegmentSize) {
MutexLocker ml(segment_cache_mutex);
ASSERT(segment_cache_size >= 0);
ASSERT(segment_cache_size <= kSegmentCacheCapacity);
if (segment_cache_size > 0) {
memory = segment_cache[--segment_cache_size];
}
}
if (memory == nullptr) {
bool executable = false;
bool compressed = false;
memory = VirtualMemory::Allocate(size, executable, compressed, "dart-zone");
total_size_.fetch_add(size);
}
if (memory == nullptr) {
OUT_OF_MEMORY();
}
Segment* result = reinterpret_cast<Segment*>(memory->start());
#ifdef DEBUG
// Zap the entire allocated segment (including the header).
ASAN_UNPOISON(reinterpret_cast<void*>(result), size);
memset(reinterpret_cast<void*>(result), kZapUninitializedByte, size);
#endif
result->next_ = next;
result->size_ = size;
result->memory_ = memory;
result->alignment_ = nullptr; // Avoid unused variable warnings.
LSAN_REGISTER_ROOT_REGION(result, sizeof(*result));
return result;
}
void Zone::Segment::DeleteSegmentList(Segment* head) {
Segment* current = head;
while (current != nullptr) {
intptr_t size = current->size();
Segment* next = current->next();
VirtualMemory* memory = current->memory();
#ifdef DEBUG
// Zap the entire current segment (including the header).
ASAN_UNPOISON(reinterpret_cast<void*>(current), current->size());
memset(reinterpret_cast<void*>(current), kZapDeletedByte, current->size());
#endif
LSAN_UNREGISTER_ROOT_REGION(current, sizeof(*current));
if (size == kSegmentSize) {
MutexLocker ml(segment_cache_mutex);
ASSERT(segment_cache_size >= 0);
ASSERT(segment_cache_size <= kSegmentCacheCapacity);
if (segment_cache_size < kSegmentCacheCapacity) {
segment_cache[segment_cache_size++] = memory;
memory = nullptr;
}
}
if (memory != nullptr) {
total_size_.fetch_sub(size);
delete memory;
}
current = next;
}
}
Zone::Zone()
: position_(reinterpret_cast<uword>(&buffer_)),
limit_(position_ + kInitialChunkSize),
segments_(nullptr),
previous_(nullptr),
handles_() {
ASSERT(Utils::IsAligned(position_, kAlignment));
#ifdef DEBUG
// Zap the entire initial buffer.
memset(&buffer_, kZapUninitializedByte, kInitialChunkSize);
#endif
}
Zone::~Zone() {
if (FLAG_trace_zones) {
Print();
}
Segment::DeleteSegmentList(segments_);
}
void Zone::Reset() {
// Traverse the chained list of segments, zapping (in debug mode)
// and freeing every zone segment.
Segment::DeleteSegmentList(segments_);
segments_ = nullptr;
#ifdef DEBUG
ASAN_UNPOISON(&buffer_, kInitialChunkSize);
memset(&buffer_, kZapDeletedByte, kInitialChunkSize);
#endif
position_ = reinterpret_cast<uword>(&buffer_);
limit_ = position_ + kInitialChunkSize;
size_ = 0;
small_segment_capacity_ = 0;
previous_ = nullptr;
handles_.Reset();
}
uintptr_t Zone::SizeInBytes() const {
return size_;
}
uintptr_t Zone::CapacityInBytes() const {
uintptr_t size = kInitialChunkSize;
for (Segment* s = segments_; s != nullptr; s = s->next()) {
size += s->size();
}
return size;
}
void Zone::Print() const {
intptr_t segment_size = CapacityInBytes();
intptr_t scoped_handle_size = handles_.ScopedHandlesCapacityInBytes();
intptr_t zone_handle_size = handles_.ZoneHandlesCapacityInBytes();
intptr_t total_size = segment_size + scoped_handle_size + zone_handle_size;
OS::PrintErr("Zone(%p, segments: %" Pd ", scoped_handles: %" Pd
", zone_handles: %" Pd ", total: %" Pd ")\n",
this, segment_size, scoped_handle_size, zone_handle_size,
total_size);
}
uword Zone::AllocateExpand(intptr_t size) {
ASSERT(size >= 0);
if (FLAG_trace_zones) {
OS::PrintErr("*** Expanding zone 0x%" Px "\n",
reinterpret_cast<intptr_t>(this));
Print();
}
// Make sure the requested size is already properly aligned and that
// there isn't enough room in the Zone to satisfy the request.
ASSERT(Utils::IsAligned(size, kAlignment));
intptr_t free_size = (limit_ - position_);
ASSERT(free_size < size);
// First check to see if we should just chain it as a large segment.
intptr_t max_size =
Utils::RoundDown(kSegmentSize - sizeof(Segment), kAlignment);
ASSERT(max_size > 0);
if (size > max_size) {
return AllocateLargeSegment(size);
}
const intptr_t kSuperPageSize = 2 * MB;
intptr_t next_size;
if (small_segment_capacity_ < kSuperPageSize) {
// When the Zone is small, grow linearly to reduce size and use the segment
// cache to avoid expensive mmap calls.
next_size = kSegmentSize;
} else {
// When the Zone is large, grow geometrically to avoid Page Table Entry
// exhaustion. Using 1.125 ratio.
next_size = Utils::RoundUp(small_segment_capacity_ >> 3, kSuperPageSize);
}
ASSERT(next_size >= kSegmentSize);
// Allocate another segment and chain it up.
segments_ = Segment::New(next_size, segments_);
small_segment_capacity_ += next_size;
// Recompute 'position' and 'limit' based on the new head segment.
uword result = Utils::RoundUp(segments_->start(), kAlignment);
position_ = result + size;
limit_ = segments_->end();
size_ += size;
ASSERT(position_ <= limit_);
return result;
}
uword Zone::AllocateLargeSegment(intptr_t size) {
ASSERT(size >= 0);
// Make sure the requested size is already properly aligned and that
// there isn't enough room in the Zone to satisfy the request.
ASSERT(Utils::IsAligned(size, kAlignment));
intptr_t free_size = (limit_ - position_);
ASSERT(free_size < size);
// Create a new large segment and chain it up.
// Account for book keeping fields in size.
size_ += size;
size += Utils::RoundUp(sizeof(Segment), kAlignment);
segments_ = Segment::New(size, segments_);
uword result = Utils::RoundUp(segments_->start(), kAlignment);
return result;
}
char* Zone::MakeCopyOfString(const char* str) {
intptr_t len = strlen(str) + 1; // '\0'-terminated.
char* copy = Alloc<char>(len);
strncpy(copy, str, len);
return copy;
}
char* Zone::MakeCopyOfStringN(const char* str, intptr_t len) {
ASSERT(len >= 0);
for (intptr_t i = 0; i < len; i++) {
if (str[i] == '\0') {
len = i;
break;
}
}
char* copy = Alloc<char>(len + 1); // +1 for '\0'
strncpy(copy, str, len);
copy[len] = '\0';
return copy;
}
char* Zone::ConcatStrings(const char* a, const char* b, char join) {
intptr_t a_len = (a == nullptr) ? 0 : strlen(a);
const intptr_t b_len = strlen(b) + 1; // '\0'-terminated.
const intptr_t len = a_len + b_len;
char* copy = Alloc<char>(len);
if (a_len > 0) {
strncpy(copy, a, a_len);
// Insert join character.
copy[a_len++] = join;
}
strncpy(©[a_len], b, b_len);
return copy;
}
void Zone::VisitObjectPointers(ObjectPointerVisitor* visitor) {
Zone* zone = this;
while (zone != nullptr) {
zone->handles()->VisitObjectPointers(visitor);
zone = zone->previous_;
}
}
char* Zone::PrintToString(const char* format, ...) {
va_list args;
va_start(args, format);
char* buffer = OS::VSCreate(this, format, args);
va_end(args);
return buffer;
}
char* Zone::VPrint(const char* format, va_list args) {
return OS::VSCreate(this, format, args);
}
StackZone::StackZone(ThreadState* thread)
#if defined(DART_USE_ABSL)
// DART_USE_ABSL encodes the use of fibers in the Dart VM for threading.
: StackResource(thread), zone_(new Zone()) {
#else
: StackResource(thread), zone_() {
#endif // defined(DART_USE_ABSL)
if (FLAG_trace_zones) {
OS::PrintErr("*** Starting a new Stack zone 0x%" Px "(0x%" Px ")\n",
reinterpret_cast<intptr_t>(this),
reinterpret_cast<intptr_t>(GetZone()));
}
// This thread must be preventing safepoints or the GC could be visiting the
// chain of handle blocks we're about the mutate.
ASSERT(Thread::Current()->MayAllocateHandles());
Zone* lzone = GetZone();
lzone->Link(thread->zone());
thread->set_zone(lzone);
}
StackZone::~StackZone() {
// This thread must be preventing safepoints or the GC could be visiting the
// chain of handle blocks we're about the mutate.
ASSERT(Thread::Current()->MayAllocateHandles());
Zone* lzone = GetZone();
ASSERT(thread()->zone() == lzone);
thread()->set_zone(lzone->previous_);
if (FLAG_trace_zones) {
OS::PrintErr("*** Deleting Stack zone 0x%" Px "(0x%" Px ")\n",
reinterpret_cast<intptr_t>(this),
reinterpret_cast<intptr_t>(lzone));
}
#if defined(DART_USE_ABSL)
// DART_USE_ABSL encodes the use of fibers in the Dart VM for threading.
delete zone_;
#endif // defined(DART_USE_ABSL)
}
} // namespace dart