-
Notifications
You must be signed in to change notification settings - Fork 1.3k
/
Copy pathconvert_sbd.py
88 lines (65 loc) · 2.11 KB
/
convert_sbd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import scipy.io, scipy.ndimage
import os.path, json
import pycocotools.mask
import numpy as np
def mask2bbox(mask):
rows = np.any(mask, axis=1)
cols = np.any(mask, axis=0)
rmin, rmax = np.where(rows)[0][[0, -1]]
cmin, cmax = np.where(cols)[0][[0, -1]]
return cmin, rmin, cmax - cmin, rmax - rmin
inst_path = './inst/'
img_path = './img/'
img_name_fmt = '%s.jpg'
ann_name_fmt = '%s.mat'
image_id = 1
ann_id = 1
types = ['train', 'val']
for t in types:
with open('%s.txt' % t, 'r') as f:
names = f.read().strip().split('\n')
images = []
annotations = []
for name in names:
img_name = img_name_fmt % name
ann_path = os.path.join(inst_path, ann_name_fmt % name)
ann = scipy.io.loadmat(ann_path)['GTinst'][0][0]
classes = [int(x[0]) for x in ann[2]]
seg = ann[0]
for idx in range(len(classes)):
mask = (seg == (idx + 1)).astype(np.float)
rle = pycocotools.mask.encode(np.asfortranarray(mask.astype(np.uint8)))
rle['counts'] = rle['counts'].decode('ascii')
annotations.append({
'id': ann_id,
'image_id': image_id,
'category_id': classes[idx],
'segmentation': rle,
'area': float(mask.sum()),
'bbox': [int(x) for x in mask2bbox(mask)],
'iscrowd': 0
})
ann_id += 1
img_name = img_name_fmt % name
img = scipy.ndimage.imread(os.path.join(img_path, img_name))
images.append({
'id': image_id,
'width': img.shape[1],
'height': img.shape[0],
'file_name': img_name
})
image_id += 1
info = {
'year': 2012,
'version': 1,
'description': 'Pascal SBD',
}
categories = [{'id': x+1} for x in range(20)]
with open('pascal_sbd_%s.json' % t, 'w') as f:
json.dump({
'info': info,
'images': images,
'annotations': annotations,
'licenses': {},
'categories': categories
}, f)