-
Notifications
You must be signed in to change notification settings - Fork 1.3k
/
Copy pathoptimize_bboxes.py
204 lines (152 loc) · 6.59 KB
/
optimize_bboxes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
"""
Instead of clustering bbox widths and heights, this script
directly optimizes average IoU across the training set given
the specified number of anchor boxes.
Run this script from the Yolact root directory.
"""
import pickle
import random
from itertools import product
from math import sqrt
import numpy as np
import torch
from scipy.optimize import minimize
dump_file = 'weights/bboxes.pkl'
aug_file = 'weights/bboxes_aug.pkl'
use_augmented_boxes = True
def intersect(box_a, box_b):
""" We resize both tensors to [A,B,2] without new malloc:
[A,2] -> [A,1,2] -> [A,B,2]
[B,2] -> [1,B,2] -> [A,B,2]
Then we compute the area of intersect between box_a and box_b.
Args:
box_a: (tensor) bounding boxes, Shape: [A,4].
box_b: (tensor) bounding boxes, Shape: [B,4].
Return:
(tensor) intersection area, Shape: [A,B].
"""
A = box_a.size(0)
B = box_b.size(0)
max_xy = torch.min(box_a[:, 2:].unsqueeze(1).expand(A, B, 2),
box_b[:, 2:].unsqueeze(0).expand(A, B, 2))
min_xy = torch.max(box_a[:, :2].unsqueeze(1).expand(A, B, 2),
box_b[:, :2].unsqueeze(0).expand(A, B, 2))
inter = torch.clamp((max_xy - min_xy), min=0)
return inter[:, :, 0] * inter[:, :, 1]
def jaccard(box_a, box_b, iscrowd=False):
"""Compute the jaccard overlap of two sets of boxes. The jaccard overlap
is simply the intersection over union of two boxes. Here we operate on
ground truth boxes and default boxes. If iscrowd=True, put the crowd in box_b.
E.g.:
A ∩ B / A ∪ B = A ∩ B / (area(A) + area(B) - A ∩ B)
Args:
box_a: (tensor) Ground truth bounding boxes, Shape: [num_objects,4]
box_b: (tensor) Prior boxes from priorbox layers, Shape: [num_priors,4]
Return:
jaccard overlap: (tensor) Shape: [box_a.size(0), box_b.size(0)]
"""
inter = intersect(box_a, box_b)
area_a = ((box_a[:, 2]-box_a[:, 0]) *
(box_a[:, 3]-box_a[:, 1])).unsqueeze(1).expand_as(inter) # [A,B]
area_b = ((box_b[:, 2]-box_b[:, 0]) *
(box_b[:, 3]-box_b[:, 1])).unsqueeze(0).expand_as(inter) # [A,B]
union = area_a + area_b - inter
if iscrowd:
return inter / area_a
else:
return inter / union # [A,B]
# Also convert to point form
def to_relative(bboxes):
return np.concatenate((bboxes[:, 2:4] / bboxes[:, :2], (bboxes[:, 2:4] + bboxes[:, 4:]) / bboxes[:, :2]), axis=1)
def make_priors(conv_size, scales, aspect_ratios):
prior_data = []
conv_h = conv_size[0]
conv_w = conv_size[1]
# Iteration order is important (it has to sync up with the convout)
for j, i in product(range(conv_h), range(conv_w)):
x = (i + 0.5) / conv_w
y = (j + 0.5) / conv_h
for scale, ars in zip(scales, aspect_ratios):
for ar in ars:
w = scale * ar / conv_w
h = scale / ar / conv_h
# Point form
prior_data += [x - w/2, y - h/2, x + w/2, y + h/2]
return torch.Tensor(prior_data).view(-1, 4).cuda()
scales = [[1.68, 2.91], [2.95, 2.22, 0.84], [2.17, 2.22, 3.22], [0.76, 2.06, 2.81], [5.33, 2.79], [13.69]]
aspect_ratios = [[[0.72, 0.96], [0.68, 1.17]], [[1.30, 0.66], [0.63, 1.23], [0.87, 1.41]], [[1.96, 1.23], [0.58, 0.84], [0.61, 1.15]], [[19.79, 2.21], [0.47, 1.76], [1.38, 0.79]], [[4.79, 17.96], [1.04]], [[14.82]]]
conv_sizes = [(35, 35), (18, 18), (9, 9), (5, 5), (3, 3), (2, 2)]
optimize_scales = False
batch_idx = 0
def compute_hits(bboxes, anchors, iou_threshold=0.5):
ious = jaccard(bboxes, anchors)
perGTAnchorMax, _ = torch.max(ious, dim=1)
return (perGTAnchorMax > iou_threshold)
def compute_recall(hits, base_hits):
hits = (hits | base_hits).float()
return torch.sum(hits) / hits.size(0)
def step(x, x_func, bboxes, base_hits, optim_idx):
# This should set the scale and aspect ratio
x_func(x, scales[optim_idx], aspect_ratios[optim_idx])
anchors = make_priors(conv_sizes[optim_idx], scales[optim_idx], aspect_ratios[optim_idx])
return -float(compute_recall(compute_hits(bboxes, anchors), base_hits).cpu())
def optimize(full_bboxes, optim_idx, batch_size=5000):
global batch_idx, scales, aspect_ratios, conv_sizes
start = batch_idx * batch_size
end = min((batch_idx + 1) * batch_size, full_bboxes.size(0))
if batch_idx > (full_bboxes.size(0) // batch_size):
batch_idx = 0
bboxes = full_bboxes[start:end, :]
anchor_base = [
make_priors(conv_sizes[idx], scales[idx], aspect_ratios[idx])
for idx in range(len(conv_sizes)) if idx != optim_idx]
base_hits = compute_hits(bboxes, torch.cat(anchor_base, dim=0))
def set_x(x, scales, aspect_ratios):
if optimize_scales:
for i in range(len(scales)):
scales[i] = max(x[i], 0)
else:
k = 0
for i in range(len(aspect_ratios)):
for j in range(len(aspect_ratios[i])):
aspect_ratios[i][j] = x[k]
k += 1
res = minimize(step, x0=scales[optim_idx] if optimize_scales else sum(aspect_ratios[optim_idx], []), method='Powell',
args = (set_x, bboxes, base_hits, optim_idx),)
def pretty_str(x:list):
if isinstance(x, list):
return '[' + ', '.join([pretty_str(y) for y in x]) + ']'
elif isinstance(x, np.ndarray):
return pretty_str(list(x))
else:
return '%.2f' % x
if __name__ == '__main__':
if use_augmented_boxes:
with open(aug_file, 'rb') as f:
bboxes = pickle.load(f)
else:
# Load widths and heights from a dump file. Obtain this with
# python3 scripts/save_bboxes.py
with open(dump_file, 'rb') as f:
bboxes = pickle.load(f)
bboxes = np.array(bboxes)
bboxes = to_relative(bboxes)
with torch.no_grad():
bboxes = torch.Tensor(bboxes).cuda()
def print_out():
if optimize_scales:
print('Scales: ' + pretty_str(scales))
else:
print('Aspect Ratios: ' + pretty_str(aspect_ratios))
for p in range(10):
print('(Sub Iteration) ', end='')
for i in range(len(conv_sizes)):
print('%d ' % i, end='', flush=True)
optimize(bboxes, i)
print('Done', end='\r')
print('(Iteration %d) ' % p, end='')
print_out()
print()
optimize_scales = not optimize_scales
print('scales = ' + pretty_str(scales))
print('aspect_ratios = ' + pretty_str(aspect_ratios))