-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathconsumer.py
216 lines (186 loc) · 6.2 KB
/
consumer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
"""Data stream processing with Apache Flink and Python."""
import asyncio
import pandas as pd
from pyflink.common.time import Time
from pyflink.common.typeinfo import Types
from pyflink.datastream import (
CheckpointingMode,
StreamExecutionEnvironment,
TimeCharacteristic,
)
from pyflink.datastream.window import TumblingProcessingTimeWindows
from pyflink.table import StreamTableEnvironment
from alerts_handler import buffer_alerts
from logger import Logger
LOGGER = Logger("alert")
SOURCE_DATA = pd.read_csv("data/data.csv")[
[
"id", "year_dt", "make", "model", "price"
]
]
def get_flink_environ():
"""
1. StreamExecutionEnvironment.get_execution_environment(): creates new
execution environment for Flink that manages the execution of streaming
data processing jobs.
"""
env = StreamExecutionEnvironment.get_execution_environment()
"""
2. env.set_parallelism(1): sets the parallelism of the Flink job to 2,
which means that all the processing of the streaming data will be done
with two threads.
"""
env.set_parallelism(1)
"""
3. env.set_stream_time_characteristic(TimeCharacteristic.EventTime): sets
time characteristic of the streaming data to be event time, which means
that the processing of events will be based on the timestamp of the events.
"""
env.set_stream_time_characteristic(TimeCharacteristic.EventTime)
"""
4. env.enable_checkpointing(10000, CheckpointingMode.EXACTLY_ONCE):
enables checkpointing for the Flink job every 10 seconds. Checkpointing
is a mechanism for ensuring fault tolerance in Flink by periodically saving
the state of the job. The CheckpointingMode.EXACTLY_ONCE ensures that each
record is processed xactly once, even in the presence of failures.
"""
env.enable_checkpointing(10000, CheckpointingMode.EXACTLY_ONCE)
"""
5. env.set_buffer_timeout(5000): sets buffer timeout to 5 seconds. The
Buffer timeout is the maximum amount of time that a record can be buffered
before it is processed.
"""
env.set_buffer_timeout(5000)
"""
6. t_env = StreamTableEnvironment.create(env): StreamTableEnvironment
provides a SQL-like interface for processing streaming data. It is used
for defining tables, queries, and aggregations over streams.
"""
t_env = StreamTableEnvironment.create(env)
return (env, t_env)
async def create_source_table(t_env):
"""
Create the source table in the Flink table environment.
Parameters
----------
t_env : StreamTableEnvironment
The Flink table environment.
"""
t_env.execute_sql(
"""
CREATE TABLE IF NOT EXISTS source_data (
id INT,
year_dt AS CAST('2023' AS STRING),
make AS CAST('Toyota' AS STRING),
model AS CAST('Camry' AS STRING),
price FLOAT
) WITH (
'connector'='datagen',
'rows-per-second'='20',
'fields.id.min'='1',
'fields.id.max'='999',
'fields.price.min'='4000',
'fields.price.max'='75000'
)
"""
)
async def create_batch_view(t_env):
"""
Create the batch view in the Flink table environment.
Parameters
----------
t_env : StreamTableEnvironment
The Flink table environment.
"""
if "batch_data" not in t_env.list_tables():
batch_data = t_env.from_pandas(SOURCE_DATA)
t_env.create_temporary_view("batch_data", batch_data)
LOGGER.info("Temporary view created for validation dataset.")
else:
LOGGER.info("Temporary view already exists for validation dataset.")
def process_flagged_record(record):
"""
Process the flagged record and send an alert.
Parameters
----------
record : Tuple
The flagged record as a tuple.
"""
app_data = {
"id": record[0],
"year": record[1],
"make": record[2],
"model": record[3],
"price": float(record[4]),
}
LOGGER.debug(f"Alert raised for application: {app_data}")
return asyncio.run(buffer_alerts([app_data]))
async def main():
"""Orchestrates the stream processing engine."""
LOGGER.info("Starting PyFlink stream processing engine...")
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
env, t_env = get_flink_environ()
await create_source_table(t_env)
await create_batch_view(t_env)
source_ds = t_env.to_append_stream(
t_env.from_path("source_data"),
Types.ROW(
[
Types.LONG(),
Types.STRING(),
Types.STRING(),
Types.STRING(),
Types.DOUBLE(),
]
),
).window_all(TumblingProcessingTimeWindows.of(Time.seconds(60)))
batch_ds = t_env.to_append_stream(
t_env.from_path("batch_data"),
Types.ROW(
[
Types.LONG(),
Types.STRING(),
Types.STRING(),
Types.STRING(),
Types.DOUBLE(),
]
),
).window_all(TumblingProcessingTimeWindows.of(Time.seconds(60)))
joined_table = t_env.sql_query(
"""
SELECT src.*
FROM source_data AS src
WHERE src.id IN (
SELECT bat.id
FROM batch_data AS bat
WHERE
src.year_dt <> bat.year_dt
or src.make <> bat.make
or src.model <> bat.model
or src.price <> bat.price
)
"""
)
joined_ds = t_env.to_retract_stream(
joined_table,
Types.ROW_NAMED(
["id", "year_dt", "make", "model", "price"],
[
Types.LONG(),
Types.STRING(),
Types.STRING(),
Types.STRING(),
Types.DOUBLE(),
],
),
)
joined_ds.filter(lambda row: row[0]).map(lambda row: row[1]).map(
process_flagged_record
)
joined_ds.print()
env.execute("Flink data stream processor.")
loop.run_until_complete(asyncio.gather(*asyncio.all_tasks()))
LOGGER.info("Shutting down PyFlink stream processing engine...\n")
if __name__ == "__main__":
asyncio.run(main())