-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdbn_cnn_interface.py
43 lines (37 loc) · 1.47 KB
/
dbn_cnn_interface.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
from pgmpy.models import DynamicBayesianNetwork
from pgmpy.inference import DBNInference
import networkx as nx
import numpy as np
class DbnCnnInterface(object):
def __init__(self, model_file='../DBN/network.nx'):
nx_model = nx.read_gpickle(model_file)
self.dbn = DynamicBayesianNetwork(nx_model.edges())
self.dbn.add_cpds(*nx_model.cpds)
self.dbn.initialize_initial_state()
self.dbn_infer = DBNInference(self.dbn)
def filter_q_values(self, q_values, evidence=0, method='binary'):
inferred = np.ndarray(shape=(len(q_values),), dtype=float)
inferred.fill(0)
variables = self.dbn.get_slice_nodes(1)
ev = {node: 0 for node in self.dbn.get_slice_nodes(0)}
if evidence != 0:
self.set_evidence(ev, evidence)
q = self.dbn_infer.query(variables=variables, evidence=ev)
for variable in q.values():
action = self.get_action_id(variable.variables[0])
if method == 'binary':
inferred[action] = 1 if variable.values[1] > 0 else 0
else:
inferred[action] = variable.values[1]
return q_values * inferred
def get_action_id(self, action):
if action[0] == 'Prompt':
return 0
elif action[0] == 'Reward':
return 1
elif action[0] == 'Abort':
return 2
return 3
def set_evidence(self, evidence, id):
if id == 1:
evidence[("Prompt", 0)] = 1