-
Notifications
You must be signed in to change notification settings - Fork 184
/
Copy pathstdlib_sorting_sort_index.fypp
502 lines (435 loc) · 20.4 KB
/
stdlib_sorting_sort_index.fypp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
#:include "common.fypp"
#:set INT_TYPES_ALT_NAME = list(zip(INT_TYPES, INT_TYPES, INT_TYPES, INT_KINDS))
#:set REAL_TYPES_ALT_NAME = list(zip(REAL_TYPES, REAL_TYPES, REAL_TYPES, REAL_KINDS))
#:set STRING_TYPES_ALT_NAME = list(zip(STRING_TYPES, STRING_TYPES, STRING_TYPES, STRING_KINDS))
#:set CHAR_TYPES_ALT_NAME = list(zip(["character(len=*)"], ["character(len=:)"], ["character(len=len(array))"], ["char"]))
#:set BITSET_TYPES_ALT_NAME = list(zip(BITSET_TYPES, BITSET_TYPES, BITSET_TYPES, BITSET_KINDS))
#:set INT_INDEX_TYPES_ALT_NAME = list(zip(["int_index", "int_index_low"], ["integer(int_index)", "integer(int_index_low)"], ["default", "low"]))
#! For better code reuse in fypp, make lists that contain the input types,
#! with each having output types and a separate name prefix for subroutines
#! This approach allows us to have the same code for all input types.
#:set IRSCB_TYPES_ALT_NAME = INT_TYPES_ALT_NAME + REAL_TYPES_ALT_NAME + STRING_TYPES_ALT_NAME + CHAR_TYPES_ALT_NAME &
& + BITSET_TYPES_ALT_NAME
!! Licensing:
!!
!! This file is subjec† both to the Fortran Standard Library license, and
!! to additional licensing requirements as it contains translations of
!! other software.
!!
!! The Fortran Standard Library, including this file, is distributed under
!! the MIT license that should be included with the library's distribution.
!!
!! Copyright (c) 2021 Fortran stdlib developers
!!
!! Permission is hereby granted, free of charge, to any person obtaining a
!! copy of this software and associated documentation files (the
!! "Software"), to deal in the Software without restriction, including
!! without limitation the rights to use, copy, modify, merge, publish,
!! distribute, sublicense, and/or sellcopies of the Software, and to permit
!! persons to whom the Software is furnished to do so, subject to the
!! following conditions:
!!
!! The above copyright notice and this permission notice shall be included
!! in all copies or substantial portions of the Software.
!!
!! THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
!! OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
!! MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
!! IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
!! CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
!! TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
!! SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
!!
!! The generic subroutine, `SORT_INDEX`, is substantially a translation to
!! Fortran 2008 of the `"Rust" sort` sorting routines in
!! [`slice.rs`](https://github.com/rust-lang/rust/blob/90eb44a5897c39e3dff9c7e48e3973671dcd9496/src/liballoc/slice.rs)
!! The `rust sort` implementation is distributed with the header:
!!
!! Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
!! file at the top-level directory of this distribution and at
!! http://rust-lang.org/COPYRIGHT.
!!
!! Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
!! http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
!! <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
!! option. This file may not be copied, modified, or distributed
!! except according to those terms.
!!
!! so the license for the original`slice.rs` code is compatible with the use
!! of modified versions of the code in the Fortran Standard Library under
!! the MIT license.
submodule(stdlib_sorting) stdlib_sorting_sort_index
implicit none
contains
#:for ki, ti, namei in INT_INDEX_TYPES_ALT_NAME
#:for t1, t2, t3, name1 in IRSCB_TYPES_ALT_NAME
module subroutine ${name1}$_sort_index_${namei}$( array, index, work, iwork, reverse )
! A modification of `${name1}$_ord_sort` to return an array of indices that
! would perform a stable sort of the `ARRAY` as input, and also sort `ARRAY`
! as desired. The indices by default
! correspond to a non-decreasing sort, but if the optional argument
! `REVERSE` is present with a value of `.TRUE.` the indices correspond to
! a non-increasing sort. The logic of the determination of indexing largely
! follows the `"Rust" sort` found in `slice.rs`:
! https://github.com/rust-lang/rust/blob/90eb44a5897c39e3dff9c7e48e3973671dcd9496/src/liballoc/slice.rs#L2159
! The Rust version in turn is a simplification of the Timsort algorithm
! described in
! https://svn.python.org/projects/python/trunk/Objects/listsort.txt, as
! it drops both the use of 'galloping' to identify bounds of regions to be
! sorted and the estimation of the optimal `run size`. However it remains
! a hybrid sorting algorithm combining an iterative Merge sort controlled
! by a stack of `RUNS` identified by regions of uniformly decreasing or
! non-decreasing sequences that may be expanded to a minimum run size and
! initially processed by an insertion sort.
!
! Note the Fortran implementation simplifies the logic as it only has to
! deal with Fortran arrays of intrinsic types and not the full generality
! of Rust's arrays and lists for arbitrary types. It also adds the
! estimation of the optimal `run size` as suggested in Tim Peters'
! original `listsort.txt`, and the optional `work` and `iwork` arrays to be
! used as scratch memory.
${t1}$, intent(inout) :: array(0:)
${ti}$, intent(out) :: index(0:)
${t3}$, intent(out), optional :: work(0:)
${ti}$, intent(out), optional :: iwork(0:)
logical, intent(in), optional :: reverse
${t2}$, allocatable :: buf(:)
${ti}$, allocatable :: ibuf(:)
integer(int_index) :: array_size, i, stat
array_size = size(array, kind=int_index)
if ( array_size > huge(index)) then
error stop "Too many entries for the kind of index."
end if
if ( array_size > size(index, kind=int_index) ) then
error stop "Too many entries for the size of index."
end if
do i = 0, array_size-1
index(i) = int(i+1, kind=${ki}$)
end do
if ( optval(reverse, .false.) ) then
call reverse_segment( array, index )
end if
! If necessary allocate buffers to serve as scratch memory.
if ( present(work) ) then
if ( size(work, kind=int_index) < array_size/2 ) then
error stop "work array is too small."
end if
if ( present(iwork) ) then
if ( size(iwork, kind=int_index) < array_size/2 ) then
error stop "iwork array is too small."
endif
call merge_sort( array, index, work, iwork )
else
allocate( ibuf(0:array_size/2-1), stat=stat )
if ( stat /= 0 ) error stop "Allocation of index buffer failed."
call merge_sort( array, index, work, ibuf )
end if
else
#:if t1[0:4] == "char"
allocate( ${t3}$ :: buf(0:array_size/2-1), &
stat=stat )
#:else
allocate( buf(0:array_size/2-1), stat=stat )
#:endif
if ( stat /= 0 ) error stop "Allocation of array buffer failed."
if ( present(iwork) ) then
if ( size(iwork, kind=int_index) < array_size/2 ) then
error stop "iwork array is too small."
endif
call merge_sort( array, index, buf, iwork )
else
allocate( ibuf(0:array_size/2-1), stat=stat )
if ( stat /= 0 ) error stop "Allocation of index buffer failed."
call merge_sort( array, index, buf, ibuf )
end if
end if
if ( optval(reverse, .false.) ) then
call reverse_segment( array, index )
end if
contains
pure function calc_min_run( n ) result(min_run)
!! Returns the minimum length of a run from 32-63 so that N/MIN_RUN is
!! less than or equal to a power of two. See
!! https://svn.python.org/projects/python/trunk/Objects/listsort.txt
integer(int_index) :: min_run
integer(int_index), intent(in) :: n
integer(int_index) :: num, r
num = n
r = 0_int_index
do while( num >= 64 )
r = ior( r, iand(num, 1_int_index) )
num = ishft(num, -1_int_index)
end do
min_run = num + r
end function calc_min_run
pure subroutine insertion_sort( array, index )
! Sorts `ARRAY` using an insertion sort, while maintaining consistency in
! location of the indices in `INDEX` to the elements of `ARRAY`.
${t1}$, intent(inout) :: array(0:)
${ti}$, intent(inout) :: index(0:)
integer(int_index) :: i, j
${ti}$ :: key_index
${t3}$ :: key
do j=1, size(array, kind=int_index)-1
key = array(j)
key_index = index(j)
i = j - 1
do while( i >= 0 )
if ( array(i) <= key ) exit
array(i+1) = array(i)
index(i+1) = index(i)
i = i - 1
end do
array(i+1) = key
index(i+1) = key_index
end do
end subroutine insertion_sort
pure function collapse( runs ) result ( r )
! Examine the stack of runs waiting to be merged, identifying adjacent runs
! to be merged until the stack invariants are restablished:
!
! 1. len(-3) > len(-2) + len(-1)
! 2. len(-2) > len(-1)
integer(int_index) :: r
type(run_type), intent(in), target :: runs(0:)
integer(int_index) :: n
logical :: test
n = size(runs, kind=int_index)
test = .false.
if (n >= 2) then
if ( runs( n-1 ) % base == 0 .or. &
runs( n-2 ) % len <= runs(n-1) % len ) then
test = .true.
else if ( n >= 3 ) then ! X exists
if ( runs(n-3) % len <= &
runs(n-2) % len + runs(n-1) % len ) then
test = .true.
! |X| <= |Y| + |Z| => will need to merge due to rho1 or rho2
else if( n >= 4 ) then
if ( runs(n-4) % len <= &
runs(n-3) % len + runs(n-2) % len ) then
test = .true.
! |W| <= |X| + |Y| => will need to merge due to rho1 or rho3
end if
end if
end if
end if
if ( test ) then
! By default merge Y & Z, rho2 or rho3
if ( n >= 3 ) then
if ( runs(n-3) % len < runs(n-1) % len ) then
r = n - 3
! |X| < |Z| => merge X & Y, rho1
return
end if
end if
r = n - 2
! |Y| <= |Z| => merge Y & Z, rho4
return
else
r = -1
end if
end function collapse
pure subroutine insert_head( array, index )
! Inserts `array(0)` into the pre-sorted sequence `array(1:)` so that the
! whole `array(0:)` becomes sorted, copying the first element into
! a temporary variable, iterating until the right place for it is found.
! copying every traversed element into the slot preceding it, and finally,
! copying data from the temporary variable into the resulting hole.
! Consistency of the indices in `index` with the elements of `array`
! are maintained.
${t1}$, intent(inout) :: array(0:)
${ti}$, intent(inout) :: index(0:)
${t3}$ :: tmp
integer(int_index) :: i
${ti}$ :: tmp_index
tmp = array(0)
tmp_index = index(0)
find_hole: do i=1, size(array, kind=int_index)-1
if ( array(i) >= tmp ) exit find_hole
array(i-1) = array(i)
index(i-1) = index(i)
end do find_hole
array(i-1) = tmp
index(i-1) = tmp_index
end subroutine insert_head
subroutine merge_sort( array, index, buf, ibuf )
! The Rust merge sort borrows some (but not all) of the ideas from TimSort,
! which is described in detail at
! (http://svn.python.org/projects/python/trunk/Objects/listsort.txt).
!
! The algorithm identifies strictly descending and non-descending
! subsequences, which are called natural runs. Where these runs are less
! than a minimum run size they are padded by adding additional samples
! using an insertion sort. The merge process is driven by a stack of
! pending unmerged runs. Each newly found run is pushed onto the stack,
! and then pairs of adjacentd runs are merged until these two invariants
! are satisfied:
!
! 1. for every `i` in `1..size(runs)-1`: `runs(i - 1)%len > runs(i)%len`
! 2. for every `i` in `2..size(runs)-1`: `runs(i - 2)%len >
! runs(i - 1)%len + runs(i)%len`
!
! The invariants ensure that the total running time is `O(n log n)`
! worst-case. Consistency of the indices in `index` with the elements of
! `array` are maintained.
${t1}$, intent(inout) :: array(0:)
${ti}$, intent(inout) :: index(0:)
${t3}$, intent(inout) :: buf(0:)
${ti}$, intent(inout) :: ibuf(0:)
integer(int_index) :: array_size, finish, min_run, r, r_count, &
start
type(run_type) :: runs(0:max_merge_stack-1), left, right
array_size = size(array, kind=int_index)
! Very short runs are extended using insertion sort to span at least this
! many elements. Slices of up to this length are sorted using insertion sort.
min_run = calc_min_run( array_size )
if ( array_size <= min_run ) then
if ( array_size >= 2 ) call insertion_sort( array, index )
return
end if
! Following Rust sort, natural runs in `array` are identified by traversing
! it backwards. By traversing it backward, merges more often go in the
! opposite direction (forwards). According to developers of Rust sort,
! merging forwards is slightly faster than merging backwards. Therefore
! identifying runs by traversing backwards should improve performance.
r_count = 0
finish = array_size - 1
do while ( finish >= 0 )
! Find the next natural run, and reverse it if it's strictly descending.
start = finish
if ( start > 0 ) then
start = start - 1
if ( array(start+1) < array(start) ) then
Descending: do while ( start > 0 )
if ( array(start) >= array(start-1) ) &
exit Descending
start = start - 1
end do Descending
call reverse_segment( array(start:finish), &
index(start:finish) )
else
Ascending: do while( start > 0 )
if ( array(start) < array(start-1) ) exit Ascending
start = start - 1
end do Ascending
end if
end if
! If the run is too short insert some more elements using an insertion sort.
Insert: do while ( start > 0 )
if ( finish - start >= min_run - 1 ) exit Insert
start = start - 1
call insert_head( array(start:finish), index(start:finish) )
end do Insert
if ( start == 0 .and. finish == array_size - 1 ) return
runs(r_count) = run_type( base = start, &
len = finish - start + 1 )
finish = start-1
r_count = r_count + 1
! Determine whether pairs of adjacent runs need to be merged to satisfy
! the invariants, and, if so, merge them.
Merge_loop: do
r = collapse( runs(0:r_count - 1) )
if ( r < 0 .or. r_count <= 1 ) exit Merge_loop
left = runs( r + 1 )
right = runs( r )
call merge( array( left % base: &
right % base + right % len - 1 ), &
left % len, buf, &
index( left % base: &
right % base + right % len - 1 ), ibuf )
runs(r) = run_type( base = left % base, &
len = left % len + right % len )
if ( r == r_count - 3 ) runs(r+1) = runs(r+2)
r_count = r_count - 1
end do Merge_loop
end do
if ( r_count /= 1 ) &
error stop "MERGE_SORT completed without RUN COUNT == 1."
end subroutine merge_sort
pure subroutine merge( array, mid, buf, index, ibuf )
! Merges the two non-decreasing runs `ARRAY(0:MID-1)` and `ARRAY(MID:)`
! using `BUF` as temporary storage, and stores the merged runs into
! `ARRAY(0:)`. `MID` must be > 0, and < `SIZE(ARRAY)-1`. Buffer `BUF`
! must be long enough to hold the shorter of the two runs.
${t1}$, intent(inout) :: array(0:)
integer(int_index), intent(in) :: mid
${t3}$, intent(inout) :: buf(0:)
${ti}$, intent(inout) :: index(0:)
${ti}$, intent(inout) :: ibuf(0:)
integer(int_index) :: array_len, i, j, k
array_len = size(array, kind=int_index)
! Merge first copies the shorter run into `buf`. Then, depending on which
! run was shorter, it traces the copied run and the longer run forwards
! (or backwards), comparing their next unprocessed elements and then
! copying the lesser (or greater) one into `array`.
if ( mid <= array_len - mid ) then ! The left run is shorter.
buf(0:mid-1) = array(0:mid-1)
ibuf(0:mid-1) = index(0:mid-1)
i = 0
j = mid
merge_lower: do k = 0, array_len-1
if ( buf(i) <= array(j) ) then
array(k) = buf(i)
index(k) = ibuf(i)
i = i + 1
if ( i >= mid ) exit merge_lower
else
array(k) = array(j)
index(k) = index(j)
j = j + 1
if ( j >= array_len ) then
array(k+1:) = buf(i:mid-1)
index(k+1:) = ibuf(i:mid-1)
exit merge_lower
end if
end if
end do merge_lower
else ! The right run is shorter
buf(0:array_len-mid-1) = array(mid:array_len-1)
ibuf(0:array_len-mid-1) = index(mid:array_len-1)
i = mid - 1
j = array_len - mid -1
merge_upper: do k = array_len-1, 0, -1
if ( buf(j) >= array(i) ) then
array(k) = buf(j)
index(k) = ibuf(j)
j = j - 1
if ( j < 0 ) exit merge_upper
else
array(k) = array(i)
index(k) = index(i)
i = i - 1
if ( i < 0 ) then
array(0:k-1) = buf(0:j)
index(0:k-1) = ibuf(0:j)
exit merge_upper
end if
end if
end do merge_upper
end if
end subroutine merge
pure subroutine reverse_segment( array, index )
! Reverse a segment of an array in place
${t1}$, intent(inout) :: array(0:)
${ti}$, intent(inout) :: index(0:)
${ti}$ :: itemp
integer(int_index) :: lo, hi
${t3}$ :: temp
lo = 0
hi = size( array, kind=int_index ) - 1
do while( lo < hi )
temp = array(lo)
array(lo) = array(hi)
array(hi) = temp
itemp = index(lo)
index(lo) = index(hi)
index(hi) = itemp
lo = lo + 1
hi = hi - 1
end do
end subroutine reverse_segment
end subroutine ${name1}$_sort_index_${namei}$
#:endfor
#:endfor
end submodule stdlib_sorting_sort_index