-
Notifications
You must be signed in to change notification settings - Fork 180
/
Copy pathconv.py
90 lines (76 loc) · 2.5 KB
/
conv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import os, sys
import numpy as np
import paddle
# paddle.enable_static()
import paddle.fluid as fluid
from paddle import ParamAttr
import paddle.nn as nn
import paddle.nn.functional as F
import torch
SEED = 666
# INPUT_SIZE = 89
# KERNEL_SIZE = 1
# STRIDES = (1,1)
# PADDING = 0
def paddle_conv():
np.random.seed(SEED)
import cv2
image = cv2.imread('images/Snipaste.jpg')
image = cv2.resize(image, (320, 32))
# mean = np.array([0.485, 0.456, 0.406])
# std = np.array([0.229, 0.224, 0.225])
mean = 0.5
std = 0.5
scale = 1. / 255
norm_img = (image * scale - mean) / std
transpose_img = norm_img.transpose(2, 0, 1)
transpose_img = np.expand_dims(transpose_img, 0)
inp = transpose_img.astype(np.float32)
x = inp
with fluid.dygraph.guard():
simple_conv = nn.Conv2D(in_channels=3,
out_channels=32,
kernel_size=3,
stride=1,
padding=1,
groups=1,
weight_attr=ParamAttr(name='conv' + "_weights"),
bias_attr=False)
inp = fluid.dygraph.to_variable(x)
ret = simple_conv(inp)
np.save('fc_w.npy', list(simple_conv.state_dict()['weight'].numpy()))
# np.save('fc_b.npy', list(simple_conv.state_dict().values())[1].numpy())
# print(ret)
return ret.numpy()
def torch_conv():
# np.random.seed(SEED)
# org = torch.Tensor(np.random.rand(1,200).astype(np.float32))
# org = torch.Tensor(np.load('org.npy'))
import cv2
image = cv2.imread('images/Snipaste.jpg')
image = cv2.resize(image, (320, 32))
# mean = np.array([0.485, 0.456, 0.406])
# std = np.array([0.229, 0.224, 0.225])
mean = 0.5
std = 0.5
scale = 1. / 255
norm_img = (image * scale - mean) / std
transpose_img = norm_img.transpose(2, 0, 1)
transpose_img = np.expand_dims(transpose_img, 0)
inp = transpose_img.astype(np.float32)
org = torch.Tensor(inp)
tfc = torch.nn.Conv2d(3,32,kernel_size=3,stride=1,padding=1,groups=1,bias=False)
fc_w = np.load('fc_w.npy')
# fc_b = np.load('fc_b.npy')
tfc.state_dict()['weight'].copy_(torch.Tensor(fc_w))
# tfc.state_dict()['bias'].copy_(torch.Tensor(fc_b))
tres = tfc(org)
# print(tres)
return tres.data.numpy()
if __name__ == '__main__':
a = paddle_conv()
b = torch_conv()
print('a: ', np.sum(a), np.mean(a), np.max(a), np.min(a))
print(b.shape)
print('b: ', np.sum(b), np.mean(b), np.max(b), np.min(b))
print(np.sum(np.abs(a-b)), np.mean(np.abs(a-b)))