-
Notifications
You must be signed in to change notification settings - Fork 180
/
Copy pathpp_self_attention.py
416 lines (359 loc) · 14.6 KB
/
pp_self_attention.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import paddle
from paddle import ParamAttr, nn
from paddle import nn, ParamAttr
from paddle.nn import functional as F
import paddle.fluid as fluid
import numpy as np
gradient_clip = 10
class WrapEncoderForFeature(nn.Layer):
def __init__(self,
src_vocab_size,
max_length,
n_layer,
n_head,
d_key,
d_value,
d_model,
d_inner_hid,
prepostprocess_dropout,
attention_dropout,
relu_dropout,
preprocess_cmd,
postprocess_cmd,
weight_sharing,
bos_idx=0):
super(WrapEncoderForFeature, self).__init__()
self.prepare_encoder = PrepareEncoder(
src_vocab_size,
d_model,
max_length,
prepostprocess_dropout,
bos_idx=bos_idx,
word_emb_param_name="src_word_emb_table")
self.encoder = Encoder(n_layer, n_head, d_key, d_value, d_model,
d_inner_hid, prepostprocess_dropout,
attention_dropout, relu_dropout, preprocess_cmd,
postprocess_cmd)
def forward(self, enc_inputs):
conv_features, src_pos, src_slf_attn_bias = enc_inputs
enc_input = self.prepare_encoder(conv_features, src_pos)
enc_output = self.encoder(enc_input, src_slf_attn_bias)
return enc_output
class WrapEncoder(nn.Layer):
"""
embedder + encoder
"""
def __init__(self,
src_vocab_size,
max_length,
n_layer,
n_head,
d_key,
d_value,
d_model,
d_inner_hid,
prepostprocess_dropout,
attention_dropout,
relu_dropout,
preprocess_cmd,
postprocess_cmd,
weight_sharing,
bos_idx=0):
super(WrapEncoder, self).__init__()
self.prepare_decoder = PrepareDecoder(
src_vocab_size,
d_model,
max_length,
prepostprocess_dropout,
bos_idx=bos_idx)
self.encoder = Encoder(n_layer, n_head, d_key, d_value, d_model,
d_inner_hid, prepostprocess_dropout,
attention_dropout, relu_dropout, preprocess_cmd,
postprocess_cmd)
def forward(self, enc_inputs):
src_word, src_pos, src_slf_attn_bias = enc_inputs
enc_input = self.prepare_decoder(src_word, src_pos)
enc_output = self.encoder(enc_input, src_slf_attn_bias)
return enc_output
class Encoder(nn.Layer):
"""
encoder
"""
def __init__(self,
n_layer,
n_head,
d_key,
d_value,
d_model,
d_inner_hid,
prepostprocess_dropout,
attention_dropout,
relu_dropout,
preprocess_cmd="n",
postprocess_cmd="da"):
super(Encoder, self).__init__()
self.encoder_layers = list()
for i in range(n_layer):
self.encoder_layers.append(
self.add_sublayer(
"layer_%d" % i,
EncoderLayer(n_head, d_key, d_value, d_model, d_inner_hid,
prepostprocess_dropout, attention_dropout,
relu_dropout, preprocess_cmd,
postprocess_cmd)))
self.processer = PrePostProcessLayer(preprocess_cmd, d_model,
prepostprocess_dropout)
def forward(self, enc_input, attn_bias):
for encoder_layer in self.encoder_layers:
enc_output = encoder_layer(enc_input, attn_bias)
enc_input = enc_output
enc_output = self.processer(enc_output) # 这里有问题
return enc_output
class EncoderLayer(nn.Layer):
"""
EncoderLayer
"""
def __init__(self,
n_head,
d_key,
d_value,
d_model,
d_inner_hid,
prepostprocess_dropout,
attention_dropout,
relu_dropout,
preprocess_cmd="n",
postprocess_cmd="da"):
super(EncoderLayer, self).__init__()
self.preprocesser1 = PrePostProcessLayer(preprocess_cmd, d_model,
prepostprocess_dropout)
self.self_attn = MultiHeadAttention(d_key, d_value, d_model, n_head,
attention_dropout)
self.postprocesser1 = PrePostProcessLayer(postprocess_cmd, d_model,
prepostprocess_dropout)
self.preprocesser2 = PrePostProcessLayer(preprocess_cmd, d_model,
prepostprocess_dropout)
self.ffn = FFN(d_inner_hid, d_model, relu_dropout)
self.postprocesser2 = PrePostProcessLayer(postprocess_cmd, d_model,
prepostprocess_dropout)
def forward(self, enc_input, attn_bias):
attn_output = self.self_attn(
self.preprocesser1(enc_input), None, None, attn_bias)
attn_output = self.postprocesser1(attn_output, enc_input)
ffn_output = self.ffn(self.preprocesser2(attn_output))
ffn_output = self.postprocesser2(ffn_output, attn_output)
return ffn_output
class MultiHeadAttention(nn.Layer):
"""
Multi-Head Attention
"""
def __init__(self, d_key, d_value, d_model, n_head=1, dropout_rate=0.):
super(MultiHeadAttention, self).__init__()
self.n_head = n_head
self.d_key = d_key
self.d_value = d_value
self.d_model = d_model
self.dropout_rate = dropout_rate
self.q_fc = paddle.nn.Linear(
in_features=d_model, out_features=d_key * n_head, bias_attr=False)
self.k_fc = paddle.nn.Linear(
in_features=d_model, out_features=d_key * n_head, bias_attr=False)
self.v_fc = paddle.nn.Linear(
in_features=d_model, out_features=d_value * n_head, bias_attr=False)
self.proj_fc = paddle.nn.Linear(
in_features=d_value * n_head, out_features=d_model, bias_attr=False)
def _prepare_qkv(self, queries, keys, values, cache=None):
if keys is None: # self-attention
keys, values = queries, queries
static_kv = False
else: # cross-attention
static_kv = True
q = self.q_fc(queries)
q = paddle.reshape(x=q, shape=[0, 0, self.n_head, self.d_key])
q = paddle.transpose(x=q, perm=[0, 2, 1, 3])
if cache is not None and static_kv and "static_k" in cache:
# for encoder-decoder attention in inference and has cached
k = cache["static_k"]
v = cache["static_v"]
else:
k = self.k_fc(keys)
v = self.v_fc(values)
k = paddle.reshape(x=k, shape=[0, 0, self.n_head, self.d_key])
k = paddle.transpose(x=k, perm=[0, 2, 1, 3])
v = paddle.reshape(x=v, shape=[0, 0, self.n_head, self.d_value])
v = paddle.transpose(x=v, perm=[0, 2, 1, 3])
if cache is not None:
if static_kv and not "static_k" in cache:
# for encoder-decoder attention in inference and has not cached
cache["static_k"], cache["static_v"] = k, v
elif not static_kv:
# for decoder self-attention in inference
cache_k, cache_v = cache["k"], cache["v"]
k = paddle.concat([cache_k, k], axis=2)
v = paddle.concat([cache_v, v], axis=2)
cache["k"], cache["v"] = k, v
return q, k, v
def forward(self, queries, keys, values, attn_bias, cache=None):
# compute q ,k ,v
keys = queries if keys is None else keys
values = keys if values is None else values
q, k, v = self._prepare_qkv(queries, keys, values, cache)
# scale dot product attention
product = paddle.matmul(x=q, y=k, transpose_y=True)
product = product * self.d_model**-0.5
if attn_bias is not None:
product += attn_bias
weights = F.softmax(product)
if self.dropout_rate:
weights = F.dropout(
weights, p=self.dropout_rate, mode="downscale_in_infer")
out = paddle.matmul(weights, v)
# combine heads
out = paddle.transpose(out, perm=[0, 2, 1, 3])
out = paddle.reshape(x=out, shape=[0, 0, out.shape[2] * out.shape[3]])
# project to output
out = self.proj_fc(out)
return out
class PrePostProcessLayer(nn.Layer):
"""
PrePostProcessLayer
"""
def __init__(self, process_cmd, d_model, dropout_rate):
super(PrePostProcessLayer, self).__init__()
self.process_cmd = process_cmd
self.functors = []
for cmd in self.process_cmd:
if cmd == "a": # add residual connection
self.functors.append(lambda x, y: x + y if y is not None else x)
elif cmd == "n": # add layer normalization
# 这里有问题
self.functors.append(
self.add_sublayer(
"layer_norm_%d" % len(
self.sublayers(include_sublayers=False)),
paddle.nn.LayerNorm(
normalized_shape=d_model,
weight_attr=fluid.ParamAttr(
initializer=fluid.initializer.Constant(1.)),
bias_attr=fluid.ParamAttr(
initializer=fluid.initializer.Constant(0.)))))
elif cmd == "d": # add dropout
self.functors.append(lambda x: F.dropout(
x, p=dropout_rate, mode="downscale_in_infer")
if dropout_rate else x)
def forward(self, x, residual=None):
for i, cmd in enumerate(self.process_cmd):
if cmd == "a":
x = self.functors[i](x, residual)
else:
x = self.functors[i](x)
return x
class PrepareEncoder(nn.Layer):
def __init__(self,
src_vocab_size,
src_emb_dim,
src_max_len,
dropout_rate=0,
bos_idx=0,
word_emb_param_name=None,
pos_enc_param_name=None):
super(PrepareEncoder, self).__init__()
self.src_emb_dim = src_emb_dim
self.src_max_len = src_max_len
self.emb = paddle.nn.Embedding(
num_embeddings=self.src_max_len,
embedding_dim=self.src_emb_dim,
sparse=True)
self.dropout_rate = dropout_rate
def forward(self, src_word, src_pos):
src_word_emb = src_word
src_word_emb = fluid.layers.cast(src_word_emb, 'float32')
src_word_emb = paddle.scale(x=src_word_emb, scale=self.src_emb_dim**0.5)
src_pos = paddle.squeeze(src_pos, axis=-1)
src_pos_enc = self.emb(src_pos)
src_pos_enc.stop_gradient = True
enc_input = src_word_emb + src_pos_enc
if self.dropout_rate:
out = F.dropout(
x=enc_input, p=self.dropout_rate, mode="downscale_in_infer")
else:
out = enc_input
return out
class PrepareDecoder(nn.Layer):
def __init__(self,
src_vocab_size,
src_emb_dim,
src_max_len,
dropout_rate=0,
bos_idx=0,
word_emb_param_name=None,
pos_enc_param_name=None):
super(PrepareDecoder, self).__init__()
self.src_emb_dim = src_emb_dim
"""
self.emb0 = Embedding(num_embeddings=src_vocab_size,
embedding_dim=src_emb_dim)
"""
self.emb0 = paddle.nn.Embedding(
num_embeddings=src_vocab_size,
embedding_dim=self.src_emb_dim,
padding_idx=bos_idx,
weight_attr=paddle.ParamAttr(
name=word_emb_param_name,
initializer=nn.initializer.Normal(0., src_emb_dim**-0.5)))
self.emb1 = paddle.nn.Embedding(
num_embeddings=src_max_len,
embedding_dim=self.src_emb_dim,
weight_attr=paddle.ParamAttr(name=pos_enc_param_name))
self.dropout_rate = dropout_rate
def forward(self, src_word, src_pos):
src_word = fluid.layers.cast(src_word, 'int64')
src_word = paddle.squeeze(src_word, axis=-1)
src_word_emb = self.emb0(src_word)
src_word_emb = paddle.scale(x=src_word_emb, scale=self.src_emb_dim**0.5)
src_pos = paddle.squeeze(src_pos, axis=-1)
src_pos_enc = self.emb1(src_pos)
src_pos_enc.stop_gradient = True
enc_input = src_word_emb + src_pos_enc
if self.dropout_rate:
out = F.dropout(
x=enc_input, p=self.dropout_rate, mode="downscale_in_infer")
else:
out = enc_input
return out
class FFN(nn.Layer):
"""
Feed-Forward Network
"""
def __init__(self, d_inner_hid, d_model, dropout_rate):
super(FFN, self).__init__()
self.dropout_rate = dropout_rate
self.fc1 = paddle.nn.Linear(
in_features=d_model, out_features=d_inner_hid)
self.fc2 = paddle.nn.Linear(
in_features=d_inner_hid, out_features=d_model)
def forward(self, x):
hidden = self.fc1(x)
hidden = F.relu(hidden)
if self.dropout_rate:
hidden = F.dropout(
hidden, p=self.dropout_rate, mode="downscale_in_infer")
out = self.fc2(hidden)
return out