-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathutils.py
327 lines (277 loc) · 11 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
# -*- coding: utf-8 -*-
# @Time : 2018/7/26 00:04
# @Author : Xiaoyu Liu
# @Email : liuxiaoyu16@fudan.edu.com
from __future__ import unicode_literals
from __future__ import division
import random
import gensim
import cPickle
import os
import re
import numpy as np
import pandas as pd
from sklearn.metrics import f1_score,accuracy_score,precision_recall_fscore_support
ES_SOURCE_FILE='../data/es_source.csv'
ES_TARGET_FILE='../data/es_target.csv'
TEST_FILE='../data/es_test.csv'
PRE_TRAINED_ES_EMBEDDING_FILE='../data/wiki.es.vec'
ES_EMBEDDING_FILE='../data/es.vec'
################################################################################
# Read data #
################################################################################
def es_tokenizer(sentence):
# 文本清洗,去掉标点和数字,分词
sentence=sentence.lower()
sentence=re.sub('\d','',sentence)
sentence=''.join([c for c in sentence if c.isalpha() or c == ' '])
return sentence.split()
def en_tokenizer(sentence):
raise NotImplementedError
def read_file(train=True,language='es'):
# 读取source data, target data 文件,文本清洗,去掉标点和数字,分词
if language=='es':
tokenizer=es_tokenizer
else:
raise NotImplementedError
# 读取文件
if train:
source_df=pd.read_csv(ES_SOURCE_FILE,sep='\t',header=None,encoding='utf-8')
target_df=pd.read_csv(ES_TARGET_FILE,sep='\t',header=None,encoding='utf-8')
source_df[0]=source_df[0].map(tokenizer)
source_df[1]=source_df[1].map(tokenizer)
target_df[0]=target_df[0].map(tokenizer)
target_df[1]=target_df[1].map(tokenizer)
return source_df.values.tolist(),target_df.values.tolist()
else:
test_df=pd.read_csv(TEST_FILE,sep='\t',header=None,encoding='utf-8')
test_df[0]=test_df[0].map(tokenizer)
test_df[1]=test_df[1].map(tokenizer)
return test_df.values.tolist()
################################################################################
# Mapping #
################################################################################
def build_vocab(source_data,target_data,test_data,min_df=5):
# 创建词典
counter={}
for data in [source_data,target_data]:
for s1,s2,_ in data:
for w in s1+s2:
counter[w]=counter.get(w,0)+1
for s1,s2 in test_data:
for w in s1+s2:
counter[w]=counter.get(w,0)+1
count_pairs=sorted(counter.items(),key=lambda x:-x[-1])
words=['<PAD>','<UNK>']
for word,_ in count_pairs:
words.append(word)
word2id={word:id for id,word in enumerate(words)}
id2word={id:word for id,word in enumerate(words)}
return word2id,id2word
def text_to_word_sequence(x1,x2,word2id):
word_sequence1=[[word2id.get(w,1) for w in s] for s in x1]
word_sequence2=[[word2id.get(w,1) for w in s] for s in x2]
return word_sequence1,word_sequence2
def load_data(language='es'):
"""
:param language:
:return: source_data,target_data,test_data,word2id
"""
# 加载处理好的数据
source_data,target_data=read_file(train=True,language=language)
test_data=read_file(train=False,language=language)
word2id,id2word=build_vocab(source_data,target_data,test_data)
source_x1,source_x2,source_label=zip(*source_data)
target_x1,target_x2,target_label=zip(*target_data)
test_x1,test_x2=zip(*test_data)
source_x1,source_x2=text_to_word_sequence(source_x1,source_x2,word2id)
target_x1,target_x2=text_to_word_sequence(target_x1,target_x2,word2id)
test_x1,test_x2=text_to_word_sequence(test_x1,test_x2,word2id)
return zip(source_x1,source_x2,source_label),zip(target_x1,target_x2,target_label),zip(test_x1,test_x2),word2id
def load_embeddings(word2id,lanuage='es'):
# 加载预训练的embeddings
if lanuage=='es':
embedding_file=ES_EMBEDDING_FILE
pre_trained_embedding_file=PRE_TRAINED_ES_EMBEDDING_FILE
else:
raise NotImplementedError
if os.path.exists(embedding_file):
print "loading from saved embedding_file"
embeddings=cPickle.load(open(embedding_file,'rb'))
embeddings[1] = np.zeros(shape=300, dtype=np.float32)
return embeddings
pre_trained=gensim.models.KeyedVectors.load_word2vec_format(fname=pre_trained_embedding_file,binary=False)
emb_dim=pre_trained.wv.syn0.shape[1]
embeddings=np.zeros(shape=[len(word2id),emb_dim], dtype=np.float32)
count=0
for word,id in word2id.items():
if word in pre_trained:
embeddings[id]=pre_trained[word]
else:
print word
count+=1
print len(word2id),count,count/len(word2id)
cPickle.dump(embeddings,open(embedding_file,'wb'),cPickle.HIGHEST_PROTOCOL)
return embeddings
################################################################################
# Batch Manager #
################################################################################
def padding(sentences,maxlen=60):
#将每个句子padding长长度60,长度不足的补0,长度超过的向后截断。
if maxlen is None:
maxlen=max([len(s) for s in sentences])
pad_sentences=[]
for sentence in sentences:
sentence=sentence[:maxlen]
pad=[0]*(maxlen-len(sentence))
pad_sentences.append(sentence+pad)
return pad_sentences
def lengths(x):
# 计算mini-batch里面,每个句子真是长度
result=[]
for sentence in x:
for i in range(len(sentence)):
if sentence[i]==0:
result.append(i)
break
return result
def minibatches(data,batch_size,mode='train'):
# 每个step生成一个mini-batch数据
if mode=='train':
train,shuffle=True,True
elif mode=='dev':
train,shuffle=True,False
elif mode=='test':
train,shuffle=False,False
else:
raise ValueError
if shuffle:
random.shuffle(data)
num_batch=len(data)//batch_size
for i in range(num_batch):
batch_data=data[i*batch_size:(i+1)*batch_size]
if train:
x1,x2,y=zip(*batch_data)
x1,x2=padding(x1),padding(x2)
yield x1,x2,y
else:
x1,x2=zip(*batch_data)
x1,x2=padding(x1),padding(x2)
yield x1,x2
if num_batch*batch_size<len(data) and not shuffle:
batch_data=data[num_batch * batch_size:]
if train:
x1,x2,y=zip(*batch_data)
x1,x2=padding(x1),padding(x2)
yield x1,x2,y
else:
x1,x2=zip(*batch_data)
x1,x2=padding(x1),padding(x2)
yield x1,x2
def minibatches2(source_data,target_data, batch_size, ratio=1, mode='train'):
# 交替生成source data的mini-batch 和target data的mini-batch
if mode == 'train':
train, shuffle = True, True
elif mode == 'dev':
train, shuffle = True, False
elif mode == 'test':
train, shuffle = False, False
else:
raise ValueError
if shuffle:
random.shuffle(source_data)
random.shuffle(target_data)
num_batch = len(target_data) // batch_size
source_batch_size=int(batch_size*ratio)
target_batch_size=batch_size
for i in range(num_batch):
source_batch_data = source_data[i * source_batch_size:(i + 1) * source_batch_size]
target_batch_data = target_data[i * target_batch_size:(i + 1) * target_batch_size]
if train:
x1, x2, y = zip(*source_batch_data)
x1, x2 = padding(x1), padding(x2)
yield x1, x2, y, 1
x1, x2, y = zip(*target_batch_data)
x1, x2 = padding(x1), padding(x2)
yield x1, x2, y, 2
else:
x1, x2 = zip(*source_batch_data)
x1, x2 = padding(x1), padding(x2)
yield x1, x2, 1
x1, x2 = zip(*target_batch_data)
x1, x2 = padding(x1), padding(x2)
yield x1, x2, 2
if num_batch * batch_size < len(target_data) and not shuffle and not train:
source_batch_data = source_data[num_batch * source_batch_data:]
target_batch_data = target_data[num_batch * target_batch_size:]
if train:
x1, x2, y = zip(*source_batch_data)
x1, x2 = padding(x1), padding(x2)
yield x1, x2, y, 1
x1, x2, y = zip(*target_batch_data)
x1, x2 = padding(x1), padding(x2)
yield x1, x2, y, 2
else:
x1, x2 = zip(*source_batch_data)
x1, x2 = padding(x1), padding(x2)
yield x1, x2, 1
x1, x2 = zip(*target_batch_data)
x1, x2 = padding(x1), padding(x2)
yield x1, x2, 2
################################################################################
# Output #
################################################################################
def score(y_true,y_pred):
p,r,f,_=precision_recall_fscore_support(y_true,y_pred,average='binary')
return p,r,f
def loss(y_true,losses):
# 计算loss,正负样本loss权重 0.8228:2.0096
loss0=[]
loss1=[]
for i in range(len(y_true)):
if y_true[i]==0:
loss0.append(losses[i]*0.8228)
else:
loss1.append(losses[i]*2.0096)
print np.mean(loss0)/0.8228,np.mean(loss1)/2.0096
return sum(loss1+loss0)/len(loss0+loss1)
def generate_file(y_pred,filename='../submit/submission.csv'):
pd.Series(y_pred).to_csv(filename,index=False,header=None)
def train_dev_split(data,cv=1):
# 生成10-fold cv
l=len(data)
s1,s2,s3,s4,s5,s6,s7,s8,s9=int(l/10),int(2*l/10),int(3*l/10),int(4*l/10),int(5*l/10),int(6*l/10),int(7*l/10),int(8*l/10),int(9*l/10)
train_data1,dev_data1=data[:s9],data[s9:]
train_data2,dev_data2=data[s1:],data[:s1]
train_data3,dev_data3=data[:s1]+data[s2:],data[s1:s2]
train_data4,dev_data4=data[:s2]+data[s3:],data[s2:s3]
train_data5,dev_data5=data[:s3]+data[s4:],data[s3:s4]
train_data6,dev_data6=data[:s4]+data[s5:],data[s4:s5]
train_data7,dev_data7=data[:s5]+data[s6:],data[s5:s6]
train_data8,dev_data8=data[:s6]+data[s7:],data[s6:s7]
train_data9,dev_data9=data[:s7]+data[s8:],data[s7:s8]
train_data10,dev_data10=data[:s8]+data[s9:],data[s8:s9]
if cv==1:
return train_data1,dev_data1
elif cv==2:
return train_data2,dev_data2
elif cv==3:
return train_data3,dev_data3
elif cv==4:
return train_data4,dev_data4
elif cv==5:
return train_data5,dev_data5
elif cv==6:
return train_data6,dev_data6
elif cv==7:
return train_data7,dev_data7
elif cv==8:
return train_data8,dev_data8
elif cv==9:
return train_data9,dev_data9
elif cv==10:
return train_data10, dev_data10
else:
raise ValueError
if __name__ == '__main__':
pass