-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathload_dataset.py
242 lines (179 loc) · 7.35 KB
/
load_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
"""
clustering-benchmarks Package
"""
# ############################################################################ #
# #
# Copyleft (C) 2020-2025, Marek Gagolewski <https://www.gagolewski.com> #
# #
# #
# This program is free software: you can redistribute it and/or modify #
# it under the terms of the GNU Affero General Public License #
# Version 3, 19 November 2007, published by the Free Software Foundation. #
# This program is distributed in the hope that it will be useful, #
# but WITHOUT ANY WARRANTY; without even the implied warranty of #
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the #
# GNU Affero General Public License Version 3 for more details. #
# You should have received a copy of the License along with this program. #
# If this is not the case, refer to <https://www.gnu.org/licenses/>. #
# #
# ############################################################################ #
import os.path
import numpy as np
from collections import namedtuple
from .preprocess_data import preprocess_data
from numpy.lib.npyio import DataSource
def load_dataset(
battery, dataset, path=None,
url=None, expanduser=True, expandvars=True,
preprocess=True, random_state=None
):
"""
Load a benchmark dataset
Reads a dataset named `battery/dataset.data.gz`
(relative to `url` or the directory `path`)
as well as all the corresponding labels
(`battery/dataset.labels0.gz`, `battery/dataset.labels1.gz`, ...).
Parameters
----------
battery
Name of the battery (dataset collection), e.g., ``"wut"`` or ``"other"``.
dataset
Dataset name, e.g., ``"x2"`` or ``"iris"``.
path
Mutually exclusive with `url`.
Path to the directory containing the downloaded benchmark datasets
suite. Defaults to the current working directory.
url
Mutually exclusive with `path`. For example,
``"https://github.com/gagolews/clustering-data-v1/raw/v1.1.0"``
to get access to <https://github.com/gagolews/clustering-data-v1>,
expanduser
Whether to call ``os.path.expanduser`` on the file path.
expandvars
Whether to call ``os.path.expandvars`` on the file path.
preprocess
Whether to call :any:`preprocess_data` on the data matrix.
random_state
Seed of the random number generator; passed to :any:`preprocess_data`.
Returns
-------
benchmark
A named tuple with the following elements:
battery
Same as the `battery` argument.
dataset
Same as the `dataset` argument.
description
Contents of the description file.
data : ndarray
Data matrix.
labels : list
A list consisting of the label vectors.
n_clusters : ndarray
The corresponding cluster counts:
``n_clusters[i]`` is equal to ``max(n_clusters[i])``.
Examples
--------
>>> import os.path
>>> import clustbench
>>> # load from a local library (a manually downloaded suite)
>>> data_path = os.path.join("~", "Projects", "clustering-data-v1") # up to you
>>> wut_x2 = clustbench.load_dataset("wut", "x2", path=data_path)
>>> print(wut_x2.battery, wut_x2.dataset)
>>> print(wut_x2.description)
>>> print(wut_x2.data, wut_x2.labels)
>>> # load from GitHub (slow...):
>>> data_url = "https://github.com/gagolews/clustering-data-v1/raw/v1.1.0"
>>> wut_smile = clustbench.load_dataset("wut", "smile", url=data_url)
>>> print(wut_smile.data, wut_smile.labels)
"""
if url is not None and path is not None:
raise ValueError("`url` and `path` are mutually exclusive.")
if url is not None:
base_name = url + "/" + battery + "/" + dataset
else:
if path is None: path = "."
base_name = os.path.join(path, battery, dataset)
if expanduser: base_name = os.path.expanduser(base_name)
if expandvars: base_name = os.path.expandvars(base_name)
data_file = base_name + ".data.gz"
data = np.loadtxt(data_file, ndmin=2)
if data.ndim != 2:
raise ValueError("Not a matrix.")
if preprocess:
data = preprocess_data(data, random_state=random_state)
data = np.ascontiguousarray(data)
labels = []
i = 0
while True:
f = base_name + ".labels%d.gz" % i
if not DataSource().exists(f):
break # stop trying to find more label vectors
ll = np.loadtxt(f, dtype="int")
if ll.ndim != 1 or ll.shape[0] != data.shape[0]:
raise ValueError("Incorrect number of labels in '%s'." % f)
labels.append(ll)
i += 1
n_clusters = np.array([np.max(ll) for ll in labels])
with DataSource().open(base_name + ".txt", "r") as readme_file:
description = readme_file.read()
RetClass = namedtuple(
"ClusteringBenchmark",
["battery", "dataset", "description", "data", "labels", "n_clusters"]
)
return RetClass(
battery=battery,
dataset=dataset,
description=description,
data=data,
labels=labels,
n_clusters=n_clusters,
)
def save_data(filename, data, fmt="%g", expanduser=True, expandvars=True):
"""
Write a data matrix for inclusion in the clustering benchmark suite
Parameters
----------
filename : string or file handle
For example, `path_to_suite/battery/dataset.data.gz`.
data : 2D array_like
A matrix-like object
fmt
See `numpy.savetxt`.
expanduser
Whether to call ``os.path.expanduser`` on the file path.
expandvars
Whether to call ``os.path.expandvars`` on the file path.
"""
data = np.array(data)
if data.ndim != 2:
raise ValueError("Not a matrix.")
if expanduser: filename = os.path.expanduser(filename)
if expandvars: filename = os.path.expandvars(filename)
np.savetxt(filename, data, fmt=fmt)
def save_labels(filename, labels, expanduser=True, expandvars=True):
"""
Write a label vector for inclusion in the clustering benchmark suite
Parameters
----------
filename : string or file handle
For example, `path_to_suite/battery/dataset.labels0.gz`.
labels : 1D array_like
A label vector.
expanduser
Whether to call ``os.path.expanduser`` on the file path.
expandvars
Whether to call ``os.path.expandvars`` on the file path.
"""
labels = np.array(labels)
if labels.ndim != 1:
raise ValueError("Not a vector.")
if not (0 <= labels.min() <= 1):
raise ValueError("Minimal label neither 0 nor 1.")
if not labels.max() >= 1:
raise ValueError("At least 1 cluster is necessary.")
if not np.all(np.bincount(labels)[1:] > 0):
raise ValueError("Denormalised label vector: Cluster IDs should be consecutive integers.")
if expanduser: filename = os.path.expanduser(filename)
if expandvars: filename = os.path.expandvars(filename)
np.savetxt(filename, labels, fmt="%d")