-
Notifications
You must be signed in to change notification settings - Fork 207
/
Copy pathtest_brownian_interval.py
334 lines (268 loc) · 12.3 KB
/
test_brownian_interval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
# Copyright 2020 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Test `BrownianInterval`.
The suite tests both running on CPU and CUDA (if available).
"""
import sys
sys.path = sys.path[1:] # A hack so that we always import the installed library.
import math
import numpy.random as npr
import torch
from scipy.stats import kstest
import pytest
import torchsde
torch.manual_seed(1147481649)
torch.set_default_dtype(torch.float64)
D = 3
SMALL_BATCH_SIZE = 16
LARGE_BATCH_SIZE = 131072
REPS = 2
MEDIUM_REPS = 25
LARGE_REPS = 500
ALPHA = 0.00001
devices = [cpu, gpu] = [torch.device('cpu'), torch.device('cuda')]
def _U_to_H(W: torch.Tensor, U: torch.Tensor, h: float) -> torch.Tensor:
return U / h - .5 * W
def _setup(device, levy_area_approximation, shape):
t0, t1 = torch.tensor([0., 1.], device=device)
ta = torch.rand([], device=device)
tb = torch.rand([], device=device)
ta, tb = min(ta, tb), max(ta, tb)
bm = torchsde.BrownianInterval(t0=t0, t1=t1, size=shape, device=device,
levy_area_approximation=levy_area_approximation)
return ta, tb, bm
def _levy_returns():
yield "none", False, False
yield "space-time", False, False
yield "space-time", True, False
for levy_area_approximation in ('davie', 'foster'):
for return_U in (True, False):
for return_A in (True, False):
yield levy_area_approximation, return_U, return_A
@pytest.mark.parametrize("device", devices)
@pytest.mark.parametrize("levy_area_approximation, return_U, return_A", _levy_returns())
def test_shape(device, levy_area_approximation, return_U, return_A):
if device == gpu and not torch.cuda.is_available():
pytest.skip(reason="CUDA not available.")
for shape, A_shape in (((SMALL_BATCH_SIZE, D), (SMALL_BATCH_SIZE, D, D)),
((SMALL_BATCH_SIZE,), (SMALL_BATCH_SIZE,)),
((), ())):
ta, tb, bm = _setup(device, levy_area_approximation, shape)
sample1 = bm(ta, return_U=return_U, return_A=return_A)
sample2 = bm(tb, return_U=return_U, return_A=return_A)
sample3 = bm(ta, tb, return_U=return_U, return_A=return_A)
shapes = []
A_shapes = []
for sample in (sample1, sample2, sample3):
if return_U:
if return_A:
W1, U1, A1 = sample
shapes.append(W1.shape)
shapes.append(U1.shape)
A_shapes.append(A1.shape)
else:
W1, U1 = sample
shapes.append(W1.shape)
shapes.append(U1.shape)
else:
if return_A:
W1, A1 = sample
shapes.append(W1.shape)
A_shapes.append(A1.shape)
else:
W1 = sample
shapes.append(W1.shape)
for shape_ in shapes:
assert shape_ == shape
for shape_ in A_shapes:
assert shape_ == A_shape
@pytest.mark.parametrize("device", devices)
@pytest.mark.parametrize("levy_area_approximation, return_U, return_A", _levy_returns())
def test_determinism_simple(device, levy_area_approximation, return_U, return_A):
if device == gpu and not torch.cuda.is_available():
pytest.skip(reason="CUDA not available.")
ta, tb, bm = _setup(device, levy_area_approximation, (SMALL_BATCH_SIZE, D))
vals = [bm(ta, tb, return_U=return_U, return_A=return_A) for _ in range(REPS)]
for val in vals[1:]:
if torch.is_tensor(val):
val = (val,)
if torch.is_tensor(vals[0]):
val0 = (vals[0],)
else:
val0 = vals[0]
for v, v0 in zip(val, val0):
assert (v == v0).all()
@pytest.mark.parametrize("device", devices)
@pytest.mark.parametrize("levy_area_approximation, return_U, return_A", _levy_returns())
def test_determinism_large(device, levy_area_approximation, return_U, return_A):
"""
Tests that a single Brownian motion deterministically produces the same results when queried at the same points.
We first of all query it at lots of points (larger than its internal cache), and then re-query at the same set of
points, and compare.
"""
if device == gpu and not torch.cuda.is_available():
pytest.skip(reason="CUDA not available.")
ta, tb, bm = _setup(device, levy_area_approximation, (SMALL_BATCH_SIZE, D))
cache = {}
for _ in range(LARGE_REPS):
ta_ = torch.rand_like(ta)
tb_ = torch.rand_like(tb)
ta_, tb_ = min(ta_, tb_), max(ta_, tb_)
val = bm(ta_, tb_, return_U=return_U, return_A=return_A)
if torch.is_tensor(val):
val = (val,)
cache[ta_, tb_] = tuple(v.detach().clone() for v in val)
cache2 = {}
for ta_, tb_ in cache:
val = bm(ta_, tb_, return_U=return_U, return_A=return_A)
if torch.is_tensor(val):
val = (val,)
cache2[ta_, tb_] = tuple(v.detach().clone() for v in val)
for ta_, tb_ in cache:
for v1, v2 in zip(cache[ta_, tb_], cache2[ta_, tb_]):
assert (v1 == v2).all()
@pytest.mark.parametrize("device", devices)
@pytest.mark.parametrize("levy_area_approximation", ['none', 'space-time', 'davie', 'foster'])
def test_normality_simple(device, levy_area_approximation):
if device == gpu and not torch.cuda.is_available():
pytest.skip(reason="CUDA not available.")
t0, t1 = 0.0, 1.0
for _ in range(REPS):
base_W = torch.tensor(npr.randn(), device=device).repeat(LARGE_BATCH_SIZE)
bm = torchsde.BrownianInterval(t0=t0, t1=t1, W=base_W, levy_area_approximation=levy_area_approximation)
t_ = npr.uniform(low=t0, high=t1)
W = bm(t0, t_)
mean_W = base_W * (t_ - t0) / (t1 - t0)
std_W = math.sqrt((t1 - t_) * (t_ - t0) / (t1 - t0))
rescaled_W = (W - mean_W) / std_W
_, pval = kstest(rescaled_W.cpu().detach().numpy(), 'norm')
assert pval >= ALPHA
if levy_area_approximation != 'none':
W, U = bm(t0, t_, return_U=True)
H = _U_to_H(W, U, t_ - t0)
mean_H = 0
std_H = math.sqrt((t_ - t0) / 12)
rescaled_H = (H - mean_H) / std_H
_, pval = kstest(rescaled_H.cpu().detach().numpy(), 'norm')
assert pval >= ALPHA
@pytest.mark.parametrize("device", devices)
@pytest.mark.parametrize("levy_area_approximation", ['none', 'space-time', 'davie', 'foster'])
def test_normality_conditional(device, levy_area_approximation):
if device == gpu and not torch.cuda.is_available():
pytest.skip(reason="CUDA not available.")
t0, t1 = 0.0, 1.0
for _ in range(REPS):
bm = torchsde.BrownianInterval(t0=t0, t1=t1, size=(LARGE_BATCH_SIZE,), device=device,
levy_area_approximation=levy_area_approximation)
for _ in range(MEDIUM_REPS):
ta, t_, tb = sorted(npr.uniform(low=t0, high=t1, size=(3,)))
W = bm(ta, tb)
W1 = bm(ta, t_)
W2 = bm(t_, tb)
mean_W1 = W * (t_ - ta) / (tb - ta)
std_W1 = math.sqrt((tb - t_) * (t_ - ta) / (tb - ta))
rescaled_W1 = (W1 - mean_W1) / std_W1
_, pval = kstest(rescaled_W1.cpu().detach().numpy(), 'norm')
assert pval >= ALPHA
mean_W2 = W * (tb - t_) / (tb - ta)
std_W2 = math.sqrt((tb - t_) * (t_ - ta) / (tb - ta))
rescaled_W2 = (W2 - mean_W2) / std_W2
_, pval = kstest(rescaled_W2.cpu().detach().numpy(), 'norm')
assert pval >= ALPHA
if levy_area_approximation != 'none':
W, U = bm(ta, tb, return_U=True)
W1, U1 = bm(ta, t_, return_U=True)
W2, U2 = bm(t_, tb, return_U=True)
h = tb - ta
h1 = t_ - ta
h2 = tb - t_
denom = math.sqrt(h1 ** 3 + h2 ** 3)
a = h1 ** 3.5 * h2 ** 0.5 / (2 * h * denom)
b = h1 ** 0.5 * h2 ** 3.5 / (2 * h * denom)
c = math.sqrt(3) * h1 ** 1.5 * h2 ** 1.5 / (6 * denom)
H = _U_to_H(W, U, h)
H1 = _U_to_H(W1, U1, h1)
H2 = _U_to_H(W2, U2, h2)
mean_H1 = H * (h1 / h) ** 2
std_H1 = math.sqrt(a ** 2 + c ** 2) / h1
rescaled_H1 = (H1 - mean_H1) / std_H1
_, pval = kstest(rescaled_H1.cpu().detach().numpy(), 'norm')
assert pval >= ALPHA
mean_H2 = H * (h2 / h) ** 2
std_H2 = math.sqrt(b ** 2 + c ** 2) / h2
rescaled_H2 = (H2 - mean_H2) / std_H2
_, pval = kstest(rescaled_H2.cpu().detach().numpy(), 'norm')
assert pval >= ALPHA
@pytest.mark.parametrize("device", devices)
@pytest.mark.parametrize("levy_area_approximation", ['none', 'space-time', 'davie', 'foster'])
def test_consistency(device, levy_area_approximation):
if device == gpu and not torch.cuda.is_available():
pytest.skip(reason="CUDA not available.")
t0, t1 = 0.0, 1.0
for _ in range(REPS):
bm = torchsde.BrownianInterval(t0=t0, t1=t1, size=(LARGE_BATCH_SIZE,), device=device,
levy_area_approximation=levy_area_approximation)
for _ in range(MEDIUM_REPS):
ta, t_, tb = sorted(npr.uniform(low=t0, high=t1, size=(3,)))
if levy_area_approximation == 'none':
W = bm(ta, tb)
W1 = bm(ta, t_)
W2 = bm(t_, tb)
else:
W, U = bm(ta, tb, return_U=True)
W1, U1 = bm(ta, t_, return_U=True)
W2, U2 = bm(t_, tb, return_U=True)
torch.testing.assert_allclose(W1 + W2, W, rtol=1e-6, atol=1e-6)
if levy_area_approximation != 'none':
torch.testing.assert_allclose(U1 + U2 + (tb - t_) * W1, U, rtol=1e-6, atol=1e-6)
# We don't test the return_A case because we don't expect that to be consistent.
@pytest.mark.parametrize("random_order", [False, True])
@pytest.mark.parametrize("device", devices)
@pytest.mark.parametrize("levy_area_approximation, return_U, return_A", _levy_returns())
def test_entropy_determinism(random_order, device, levy_area_approximation, return_U, return_A):
if device == gpu and not torch.cuda.is_available():
pytest.skip(reason="CUDA not available.")
t0, t1 = 0.0, 1.0
entropy = 56789
points1 = torch.rand(1000)
points2 = torch.rand(1000)
outs = []
tol = 1e-6 if random_order else 0.
bm = torchsde.BrownianInterval(t0=t0, t1=t1, size=(), device=device,
levy_area_approximation=levy_area_approximation, entropy=entropy, tol=tol,
halfway_tree=random_order)
for point1, point2 in zip(points1, points2):
point1, point2 = sorted([point1, point2])
outs.append(bm(point1, point2, return_U=return_U, return_A=return_A))
bm = torchsde.BrownianInterval(t0=t0, t1=t1, size=(), device=device,
levy_area_approximation=levy_area_approximation, entropy=entropy, tol=tol,
halfway_tree=random_order)
if random_order:
perm = torch.randperm(1000)
points1 = points1[perm]
points2 = points2[perm]
outs = [outs[i.item()] for i in perm]
for point1, point2, out in zip(points1, points2, outs):
point1, point2 = sorted([point1, point2])
out_ = bm(point1, point2, return_U=return_U, return_A=return_A)
# Assert equal
if torch.is_tensor(out):
out = (out,)
if torch.is_tensor(out_):
out_ = (out_,)
for outi, outi_ in zip(out, out_):
if torch.is_tensor(outi):
assert (outi == outi_).all()
else:
assert outi == outi_