-
Notifications
You must be signed in to change notification settings - Fork 53
/
Copy path0160. Intersection of Two Linked Lists.js
84 lines (75 loc) · 2.36 KB
/
0160. Intersection of Two Linked Lists.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
// Write a program to find the node at which the intersection of two singly linked lists begins.
//
//
// For example, the following two linked lists:
//
// A: a1 → a2
// ↘
// c1 → c2 → c3
// ↗
// B: b1 → b2 → b3
//
// begin to intersect at node c1.
//
// Notes:
//
// If the two linked lists have no intersection at all, return null.
// The linked lists must retain their original structure after the function returns.
// You may assume there are no cycles anywhere in the entire linked structure.
// Your code should preferably run in O(n) time and use only O(1) memory.
/**
* Definition for singly-linked list.
* function ListNode(val) {
* this.val = val;
* this.next = null;
* }
*/
/**
* @param {ListNode} headA
* @param {ListNode} headB
* @return {ListNode}
*/
// 1) Hashmap
// Time O(m + n)
// Space O(m) or O(n)
const getIntersectionNode1 = (headA, headB) => {
let map = new Map(); // {} does not work here, since the key does not support ListNode
while (headA) {
map.set(headA, true);
headA = headA.next;
}
while (headB) {
if (map.has(headB)) return headB;
headB = headB.next;
}
return null;
};
// 2) Two pointers (slow version)
const getIntersectionNode2 = (headA, headB) => {
let a = headA;
let b = headB;
while (a !== b) {
a = a ? a.next : headA; // no exchange which is why it is slow
b = b ? b.next : headB;
}
return a;
};
// 3) Two pointers (fast version)
// Time O(m + n)
// Space O(1)
//
// To see why the above trick would work, consider the following two lists: A = {1,3,5,7,9,11} and B = {2,4,9,11},
// which are intersected at node '9'. Since B.length (=4) < A.length (=6), b would reach the end of the merged list
// first, because b traverses exactly 2 nodes less than a does. By redirecting b to head A, and a to head B, we now ask
// b to travel exactly 2 more nodes than a would. So in the second iteration, they are guaranteed to reach the
// intersection node at the same time.
const getIntersectionNode = (headA, headB) => {
let a = headA;
let b = headB;
// a === b happens at the connecting point or when they are both null at the end which means no intersection
while (a !== b) {
a = a ? a.next : headB; // move a to head of b if at end
b = b ? b.next : headA; // move b to head of a if at end
}
return a;
};