-
Notifications
You must be signed in to change notification settings - Fork 53
/
Copy path0454. 4Sum II.js
53 lines (50 loc) · 1.33 KB
/
0454. 4Sum II.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
// Given four lists A, B, C, D of integer values, compute how many tuples (i, j, k, l) there are such that A[i] + B[j] + C[k] + D[l] is zero.
//
// To make problem a bit easier, all A, B, C, D have same length of N where 0 ≤ N ≤ 500. All integers are in the range of -228 to 228 - 1 and the result is guaranteed to be at most 231 - 1.
//
// Example:
//
// Input:
// A = [ 1, 2]
// B = [-2,-1]
// C = [-1, 2]
// D = [ 0, 2]
//
// Output:
// 2
//
// Explanation:
// The two tuples are:
// 1. (0, 0, 0, 1) -> A[0] + B[0] + C[0] + D[1] = 1 + (-2) + (-1) + 2 = 0
// 2. (1, 1, 0, 0) -> A[1] + B[1] + C[0] + D[0] = 2 + (-1) + (-1) + 0 = 0
/**
* @param {number[]} A
* @param {number[]} B
* @param {number[]} C
* @param {number[]} D
* @return {number}
*/
// Idea
// The paths through the column vectors A, B, C, and D with zero sum can be found by
// first counting the paths halfway through with sum A[i] + B[j] and then checking if their additive inverses exist as C[k] + D[l].
//
// Time O(n^2)
// Space O(n^2)
const fourSumCount = (A, B, C, D) => {
const map = {};
for (const a of A) {
for (const b of B) {
if (map[a + b] == null) map[a + b] = 0;
map[a + b]++;
}
}
let count = 0;
for (const c of C) {
for (const d of D) {
if (map[- c - d] != null) {
count += map[- c - d];
}
}
}
return count;
};