-
Notifications
You must be signed in to change notification settings - Fork 53
/
Copy path0542. 01 Matrix.js
83 lines (77 loc) · 1.97 KB
/
0542. 01 Matrix.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
// Given a matrix consists of 0 and 1, find the distance of the nearest 0 for each cell.
// The distance between two adjacent cells is 1.
//
// Example 1:
//
// Input:
// [[0,0,0],
// [0,1,0],
// [0,0,0]]
//
// Output:
// [[0,0,0],
// [0,1,0],
// [0,0,0]]
//
// Example 2:
//
// Input:
// [[0,0,0],
// [0,1,0],
// [1,1,1]]
//
// Output:
// [[0,0,0],
// [0,1,0],
// [1,2,1]]
//
// Note:
//
// The number of elements of the given matrix will not exceed 10,000.
// There are at least one 0 in the given matrix.
// The cells are adjacent in only four directions: up, down, left and right.
/**
* @param {number[][]} matrix
* @return {number[][]}
*/
// 1) BFS
// Time O(r * c). 2 passes of r * c each
// Space O(r * c).
//
// For our BFS routine, we keep a queue, q to maintain the queue of cells to be examined next.
// We start by adding all the cells with 0s to q.
// Initially, distance for each 0 cell is 0 and distance for each 1 is Infinity, which is updated during the BFS.
// Pop the cell from queue, and examine its neighbours. If the new calculated distance for neighbour {i,j} is smaller,
// we add {i,j} to q and update matrix[i][j].
const updateMatrix = (matrix) => {
if (matrix == null || matrix.length === 0 || matrix[0].length === 0) return matrix;
const h = matrix.length;
const w = matrix[0].length;
const dirs = [[1, 0], [-1, 0], [0, 1], [0, -1]];
const q = [];
for (let i = 0; i < h; i++) {
for (let j = 0; j < w; j++) {
if (matrix[i][j] === 0) {
q.push([i, j]);
} else {
matrix[i][j] = Infinity;
}
}
}
while (q.length) {
const [x, y] = q.shift();
for (const [dx, dy] of dirs) {
const i = x + dx;
const j = y + dy;
if (i < 0 || i >= h || j < 0 || j >= w) continue;
if (matrix[i][j] > matrix[x][y] + 1) {
q.push([i, j]);
matrix[i][j] = matrix[x][y] + 1;
}
}
}
return matrix;
};
// 2) Dynamic programming
// Time O(r * c). 2 passes of r * c each
// Space O(r * c)