-
Notifications
You must be signed in to change notification settings - Fork 53
/
Copy path0669. Trim a Binary Search Tree.js
66 lines (63 loc) · 1.32 KB
/
0669. Trim a Binary Search Tree.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
// Given a binary search tree and the lowest and highest boundaries as L and R, trim the tree so that all its elements lies in [L, R] (R >= L). You might need to change the root of the tree, so the result should return the new root of the trimmed binary search tree.
//
// Example 1:
// Input:
// 1
// / \
// 0 2
//
// L = 1
// R = 2
//
// Output:
// 1
// \
// 2
//
// Example 2:
// Input:
// 3
// / \
// 0 4
// \
// 2
// /
// 1
//
// L = 1
// R = 3
//
// Output:
// 3
// /
// 2
// /
// 1
/**
* Definition for a binary tree node.
* function TreeNode(val) {
* this.val = val;
* this.left = this.right = null;
* }
*/
/**
* @param {TreeNode} root
* @param {number} L
* @param {number} R
* @return {TreeNode}
*/
// DFS
// Time O(n)
// Space O(n)
//
// When node.val > R, we know that the trimmed binary tree must occur to the left of the node.
// Similarly, when node.val < L, the trimmed binary tree occurs to the right of the node.
// Otherwise, we will trim both sides of the tree.
const trimBST = (root, L, R) => {
if (root == null) return root;
if (root.val > R) return trimBST(root.left, L, R);
if (root.val < L) return trimBST(root.right, L, R);
root.left = trimBST(root.left, L, R);
root.right = trimBST(root.right, L, R);
return root;
};