-
Notifications
You must be signed in to change notification settings - Fork 53
/
Copy path1120. Maximum Average Subtree.js
52 lines (46 loc) · 1.42 KB
/
1120. Maximum Average Subtree.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
// Given the root of a binary tree, find the maximum average value of any subtree of that tree.
// (A subtree of a tree is any node of that tree plus all its descendants. The average value of a tree is the sum of its values, divided by the number of nodes.)
//
// Example 1:
//
// 5
// / \
// 6 1
//
// Input: [5,6,1]
// Output: 6.00000
// Explanation:
// For the node with value = 5 we have an average of (5 + 6 + 1) / 3 = 4.
// For the node with value = 6 we have an average of 6 / 1 = 6.
// For the node with value = 1 we have an average of 1 / 1 = 1.
// So the answer is 6 which is the maximum.
//
// Note:
//
// The number of nodes in the tree is between 1 and 5000.
// Each node will have a value between 0 and 100000.
// Answers will be accepted as correct if they are within 10^-5 of the correct answer.
/**
* Definition for a binary tree node.
* function TreeNode(val) {
* this.val = val;
* this.left = this.right = null;
* }
*/
/**
* @param {TreeNode} root
* @return {number}
*/
// Post-order traversal, DFS
const maximumAverageSubtree = (root) => {
const go = (node) => {
if (node == null) return { sum: 0, count: 0, maxAvg: 0 };
const l = go(node.left);
const r = go(node.right);
const sum = l.sum + r.sum + node.val;
const count = l.count + r.count + 1;
const maxAvg = Math.max(l.maxAvg, r.maxAvg, sum / count);
return { sum, count, maxAvg };
};
return go(root).maxAvg;
};