Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Why are there so many variables named layrnorm in the codebase? #36623

Closed
jere357 opened this issue Mar 10, 2025 · 1 comment
Closed

Why are there so many variables named layrnorm in the codebase? #36623

jere357 opened this issue Mar 10, 2025 · 1 comment

Comments

@jere357
Copy link

jere357 commented Mar 10, 2025

Running

grep -R -n --color=auto "layrnorm" .

gives these results when ran in src/tranformers

./models/idefics/vision.py:441:        self.pre_layrnorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
./models/idefics/vision.py:468:        hidden_states = self.pre_layrnorm(hidden_states)
./models/idefics/vision_tf.py:506:        self.pre_layrnorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="pre_layrnorm")
./models/idefics/vision_tf.py:534:        hidden_states = self.pre_layrnorm(hidden_states)
./models/idefics/vision_tf.py:564:        if getattr(self, "pre_layrnorm", None) is not None:
./models/idefics/vision_tf.py:565:            with tf.name_scope(self.pre_layrnorm.name):
./models/idefics/vision_tf.py:566:                self.pre_layrnorm.build([None, None, self.embed_dim])
./models/altclip/modeling_altclip.py:1140:        self.pre_layrnorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
./models/altclip/modeling_altclip.py:1168:        hidden_states = self.pre_layrnorm(hidden_states)
./models/git/convert_git_to_pytorch.py:88:    rename_keys.append((f"{prefix}image_encoder.ln_pre.weight", "git.image_encoder.vision_model.pre_layrnorm.weight"))
./models/git/convert_git_to_pytorch.py:89:    rename_keys.append((f"{prefix}image_encoder.ln_pre.bias", "git.image_encoder.vision_model.pre_layrnorm.bias"))
./models/git/modeling_git.py:997:        self.pre_layrnorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
./models/git/modeling_git.py:1025:        hidden_states = self.pre_layrnorm(hidden_states)
./models/clipseg/modeling_clipseg.py:849:        self.pre_layrnorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
./models/clipseg/modeling_clipseg.py:874:        hidden_states = self.pre_layrnorm(hidden_states)
./models/clipseg/convert_clipseg_original_pytorch_to_hf.py:87:        name = name.replace("visual.ln_pre", "vision_model.pre_layrnorm")
./models/chinese_clip/convert_chinese_clip_original_pytorch_to_hf.py:84:    copy_linear(hf_model.vision_model.pre_layrnorm, pt_weights, "visual.ln_pre")
./models/chinese_clip/modeling_chinese_clip.py:1097:        self.pre_layrnorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
./models/chinese_clip/modeling_chinese_clip.py:1124:        hidden_states = self.pre_layrnorm(hidden_states)
./models/clip/modeling_tf_clip.py:719:        self.pre_layernorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="pre_layrnorm")
./models/clip/modeling_clip.py:1073:        self.pre_layrnorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
./models/clip/modeling_clip.py:1101:        hidden_states = self.pre_layrnorm(hidden_states)
./models/clip/convert_clip_original_pytorch_to_hf.py:96:    copy_linear(hf_model.vision_model.pre_layrnorm, pt_model.visual.ln_pre)
./models/clip/modeling_flax_clip.py:584:        self.pre_layrnorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
./models/clip/modeling_flax_clip.py:603:        hidden_states = self.pre_layrnorm(hidden_states)
./models/kosmos2/modeling_kosmos2.py:748:        self.pre_layrnorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
./models/kosmos2/modeling_kosmos2.py:770:        hidden_states = self.pre_layrnorm(hidden_states)
./models/kosmos2/modeling_kosmos2.py:1440:            module.pre_layrnorm.bias.data.zero_()
./models/kosmos2/modeling_kosmos2.py:1441:            module.pre_layrnorm.weight.data.fill_(1.0)
./models/kosmos2/convert_kosmos2_original_pytorch_checkpoint_to_pytorch.py:16:    "ln_pre": "pre_layrnorm",

Why are there so many layernorm variables named layrnorm? Is it a typo or is this intended?

@Rocketknight1
Copy link
Member

Seems perfectly nrmal to me

Real answer: I have no idea why it's like this, but it's probably a typo in one original codebase that was copied by other models. Fixing it would unfortunately break saved checkpoints, so we'll probably just leave it!

@Rocketknight1 Rocketknight1 closed this as not planned Won't fix, can't repro, duplicate, stale Mar 10, 2025
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants