-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathDelaunayTriangulation.cpp
144 lines (141 loc) · 4.36 KB
/
DelaunayTriangulation.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
/* Delaunay Triangulation:
Given a sets of points on 2D plane, find a
triangulation such that no points will strictly
inside circumcircle of any triangle.
find : return a triangle contain given point
add_point : add a point into triangulation
A Triangle is in triangulation iff. its has_chd is 0.
Region of triangle u: iterate each u.edge[i].tri,
each points are u.p[(i+1)%3], u.p[(i+2)%3]
calculation involves O(|V|^6) */
const int N = 100000 + 5;
const type inf = 2e3;
type eps = 1e-6; // 0 when integer
type sqr(type x) { return x*x; }
// return p4 is in circumcircle of tri(p1,p2,p3)
bool in_cc(const Pt& p1, const Pt& p2, const Pt& p3, const Pt& p4){
type u11 = p1.X - p4.X; type u12 = p1.Y - p4.Y;
type u21 = p2.X - p4.X; type u22 = p2.Y - p4.Y;
type u31 = p3.X - p4.X; type u32 = p3.Y - p4.Y;
type u13 = sqr(p1.X)-sqr(p4.X)+sqr(p1.Y)-sqr(p4.Y);
type u23 = sqr(p2.X)-sqr(p4.X)+sqr(p2.Y)-sqr(p4.Y);
type u33 = sqr(p3.X)-sqr(p4.X)+sqr(p3.Y)-sqr(p4.Y);
type det = -u13*u22*u31 + u12*u23*u31 + u13*u21*u32
-u11*u23*u32 - u12*u21*u33 + u11*u22*u33;
return det > eps;
}
type side(const Pt& a, const Pt& b, const Pt& p)
{ return (b - a) ^ (p - a); }
typedef int SdRef;
struct Tri;
typedef Tri* TriRef;
struct Edge {
TriRef tri; SdRef side;
Edge():tri(0), side(0){}
Edge(TriRef _tri, SdRef _side):tri(_tri), side(_side){}
};
struct Tri {
Pt p[3];
Edge edge[3];
TriRef chd[3];
Tri() {}
Tri(const Pt& p0, const Pt& p1, const Pt& p2) {
p[0] = p0; p[1] = p1; p[2] = p2;
chd[0] = chd[1] = chd[2] = 0;
}
bool has_chd() const { return chd[0] != 0; }
int num_chd() const {
return chd[0] == 0 ? 0
: chd[1] == 0 ? 1
: chd[2] == 0 ? 2 : 3;
}
bool contains(Pt const& q) const {
for( int i = 0 ; i < 3 ; i ++ )
if( side(p[i], p[(i + 1) % 3] , q) < -eps )
return false;
return true;
}
} pool[ N * 10 ], *tris;
void edge( Edge a, Edge b ){
if(a.tri) a.tri->edge[a.side] = b;
if(b.tri) b.tri->edge[b.side] = a;
}
struct Trig { // Triangulation
Trig(){
the_root = // Tri should at least contain all points
new(tris++)Tri(Pt(-inf,-inf),Pt(+inf+inf,-inf),Pt(-inf,+inf+inf));
}
TriRef find(Pt p)const{ return find(the_root,p); }
void add_point(const Pt& p){ add_point(find(the_root,p),p); }
TriRef the_root;
static TriRef find(TriRef root, const Pt& p) {
while( true ){
if( !root->has_chd() )
return root;
for( int i = 0; i < 3 && root->chd[i] ; ++i )
if (root->chd[i]->contains(p)) {
root = root->chd[i];
break;
}
}
assert( false ); // "point not found"
}
void add_point(TriRef root, Pt const& p) {
TriRef tab,tbc,tca;
/* split it into three triangles */
tab=new(tris++) Tri(root->p[0],root->p[1],p);
tbc=new(tris++) Tri(root->p[1],root->p[2],p);
tca=new(tris++) Tri(root->p[2],root->p[0],p);
edge(Edge(tab,0), Edge(tbc,1));
edge(Edge(tbc,0), Edge(tca,1));
edge(Edge(tca,0), Edge(tab,1));
edge(Edge(tab,2), root->edge[2]);
edge(Edge(tbc,2), root->edge[0]);
edge(Edge(tca,2), root->edge[1]);
root->chd[0] = tab;
root->chd[1] = tbc;
root->chd[2] = tca;
flip(tab,2);
flip(tbc,2);
flip(tca,2);
}
void flip(TriRef tri, SdRef pi) {
TriRef trj = tri->edge[pi].tri;
int pj = tri->edge[pi].side;
if (!trj) return;
if (!in_cc(tri->p[0],tri->p[1],tri->p[2],trj->p[pj])) return;
/* flip edge between tri,trj */
TriRef trk = new(tris++) Tri(tri->p[(pi+1)%3], trj->p[pj], tri->p[pi]);
TriRef trl = new(tris++) Tri(trj->p[(pj+1)%3], tri->p[pi], trj->p[pj]);
edge(Edge(trk,0), Edge(trl,0));
edge(Edge(trk,1), tri->edge[(pi+2)%3]);
edge(Edge(trk,2), trj->edge[(pj+1)%3]);
edge(Edge(trl,1), trj->edge[(pj+2)%3]);
edge(Edge(trl,2), tri->edge[(pi+1)%3]);
tri->chd[0]=trk; tri->chd[1]=trl; tri->chd[2]=0;
trj->chd[0]=trk; trj->chd[1]=trl; trj->chd[2]=0;
flip(trk,1); flip(trk,2);
flip(trl,1); flip(trl,2);
}
};
vector<TriRef> triang;
set<TriRef> vst;
void go( TriRef now ){
if( vst.find( now ) != vst.end() )
return;
vst.insert( now );
if( !now->has_chd() ){
triang.push_back( now );
return;
}
for( int i = 0 ; i < now->num_chd() ; i ++ )
go( now->chd[ i ] );
}
void build( int n , Pt* ps ){
tris = pool;
random_shuffle(ps, ps + n);
Trig tri;
for(int i = 0; i < n; ++ i)
tri.add_point(ps[i]);
go( tri.the_root );
}