-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathSimplex.cpp
64 lines (64 loc) · 1.89 KB
/
Simplex.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
const int MAXN = 111;
const int MAXM = 111;
const double eps = 1E-10;
double a[MAXN][MAXM], b[MAXN], c[MAXM], d[MAXN][MAXM];
double x[MAXM];
int ix[MAXN + MAXM]; // !!! array all indexed from 0
// max{cx} subject to {Ax<=b,x>=0}
// n: constraints, m: vars !!!
// x[] is the optimal solution vector
// usage :
// value = simplex(a, b, c, N, M);
double simplex(double a[MAXN][MAXM], double b[MAXN],
double c[MAXM], int n, int m){
++m;
int r = n, s = m - 1;
memset(d, 0, sizeof(d));
for (int i = 0; i < n + m; ++i) ix[i] = i;
for (int i = 0; i < n; ++i) {
for (int j = 0; j < m - 1; ++j) d[i][j] = -a[i][j];
d[i][m - 1] = 1;
d[i][m] = b[i];
if (d[r][m] > d[i][m]) r = i;
}
for (int j = 0; j < m - 1; ++j) d[n][j] = c[j];
d[n + 1][m - 1] = -1;
for (double dd;; ) {
if (r < n) {
int t = ix[s]; ix[s] = ix[r + m]; ix[r + m] = t;
d[r][s] = 1.0 / d[r][s];
for (int j = 0; j <= m; ++j)
if (j != s) d[r][j] *= -d[r][s];
for (int i = 0; i <= n + 1; ++i) if (i != r) {
for (int j = 0; j <= m; ++j) if (j != s)
d[i][j] += d[r][j] * d[i][s];
d[i][s] *= d[r][s];
}
}
r = -1; s = -1;
for (int j = 0; j < m; ++j)
if (s < 0 || ix[s] > ix[j]) {
if (d[n + 1][j] > eps ||
(d[n + 1][j] > -eps && d[n][j] > eps))
s = j;
}
if (s < 0) break;
for (int i = 0; i < n; ++i) if (d[i][s] < -eps) {
if (r < 0 ||
(dd = d[r][m] / d[r][s] - d[i][m] / d[i][s]) < -eps ||
(dd < eps && ix[r + m] > ix[i + m]))
r = i;
}
if (r < 0) return -1; // not bounded
}
if (d[n + 1][m] < -eps) return -1; // not executable
double ans = 0;
for(int i=0; i<m; i++) x[i] = 0;
for (int i = m; i < n + m; ++i) { // the missing enumerated x[i] = 0
if (ix[i] < m - 1){
ans += d[i - m][m] * c[ix[i]];
x[ix[i]] = d[i-m][m];
}
}
return ans;
}