-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathReducer.hs
151 lines (123 loc) · 4.67 KB
/
Reducer.hs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
-- efficient lazy evaluation for lambda calculus with constructors and delta functions
-- eliminators are used instead of case expressions
{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE RankNTypes #-}
import Control.Monad.ST
import Control.Monad.Fix
import System.Environment
import Data.STRef
--------------------------------------------------------------------------------
data Exp s
= Ref !(STRef s (Exp s))
| Lam !(Exp s -> Exp s)
| App (Exp s) (Exp s)
| Action !(ST s (Exp s))
| Con !ConName [Exp s]
| Int !Int
| LetRec (Exp s -> Exp s) (Exp s -> Exp s)
infixl 1 `App`
type VarName = Int
data ConName = T2 | CTrue | CFalse | Nil | Cons
deriving (Eq, Show)
instance Show (Exp s) where
show = \case
Int i -> show i
--------------------------------------------------------------------------------
pureEval :: (forall s . Exp s) -> String
pureEval e = runST (show <$> evalN e)
-- eval to some normal form (not needed in the current test case)
evalN :: Exp s -> ST s (Exp s)
evalN x = eval x >>= \case
Con f es -> Con f <$> mapM evalN es
c -> return c
-- eval to weak head normal form
eval :: Exp s -> ST s (Exp s)
eval = \case
App (Lam f) x -> eval . f =<< addHeap x -- optimization
App l x -> eval l >>= \(Lam f) -> eval . f =<< addHeap x
Action m -> m
Ref i -> do
x <- readSTRef i
if reduced x then return x else do -- optimization
-- writeSTRef i $ error "cycle in spine" -- optional test
z <- eval x
writeSTRef i z
return z
LetRec f g -> eval . g =<< mfix (fmap Ref . newSTRef . f)
x -> return x
reduced = \case
App{} -> False
Action{} -> False
_ -> True
addHeap :: Exp s -> ST s (Exp s)
addHeap e = if reduced e then return e else Ref <$> newSTRef e
iSqrt :: Int -> Int
iSqrt = round . sqrt . fromIntegral
-------------------------------------------------------------------------------- example codes
infixl 1 @@, @@.
(@@), (@@.) :: Exp s -> Exp s -> Exp s
(@@) = App
(@@.) = (@@)
f0 s = Action s
f1 s = Lam $ \v0 -> Action $ s v0
f2 s = Lam $ \v0 -> Lam $ \v1 -> Action $ s v0 v1
f3 s = Lam $ \v0 -> Lam $ \v1 -> Lam $ \v2 -> Action $ s v0 v1 v2
c0 s = Con s []
c1 s = Lam $ \v0 -> Con s [v0]
c2 s = Lam $ \v0 -> Lam $ \v1 -> Con s [v0, v1]
c3 s = Lam $ \v0 -> Lam $ \v1 -> Lam $ \v2 -> Con s [v0, v1, v2]
intOp g = f2 $ \a b -> do
Int x <- eval a
Int y <- eval b
return $ Int $ g x y
boolOp g = f2 $ \a b -> do
Int x <- eval a
Int y <- eval b
return $ if g x y then true else false
undef = f0 $ return $ error "undef"
-- tuples
t2 = c2 T2
elimT2 = f2 $ \t f -> eval t >>= eval . \(Con _ (x: y:_)) -> f `App` x `App` y
-- booleans
false = c0 CFalse
true = c0 CTrue
elimBool = f3 $ \xs f g -> eval xs >>= eval . \case
Con CFalse _ -> f
Con CTrue _ -> g
and' = Lam $ \v0 -> Lam $ \v1 -> elimBool @@ v0 @@ false @@ v1
-- lists
nil = c0 Nil
cons = c2 Cons
elimList = f3 $ \xs f g -> eval xs >>= eval . \case
Con Nil _ -> f
Con Cons (x: y:_) -> g `App` x `App` y
-- integers
zero = Int 0
one = Int 1
two = Int 2
add = intOp (+)
sub = intOp (-)
mod' = intOp mod
eq = boolOp (==)
neq = boolOp (/=)
leq = boolOp (<=)
geq = boolOp (>=)
iSqrt' = f1 $ \x -> eval x >>= \(Int n) -> return $ Int (iSqrt n)
nthPrime n =
LetRec (\r -> Lam $ \v0 -> cons @@. v0 @@. (r @@ (add @@. one @@. v0))) $ \from ->
LetRec (\r -> Lam $ \v0 -> Lam $ \v1 -> Lam $ \v2 ->
elimList @@. v2 @@. v1 @@. (Lam $ \v3 -> Lam $ \v4 -> v0 @@ v3 @@ (r @@ v0 @@ v1 @@ v4))) $ \foldr' ->
LetRec (\r -> Lam $ \v0 -> Lam $ \v1 ->
elimList @@. v1 @@. nil @@. (Lam $ \v2 -> Lam $ \v3 -> elimBool @@. (v0 @@ v2) @@. nil @@. (cons @@. v2 @@. (r @@ v0 @@ v3)))) $ \takeWhile' ->
LetRec (\r -> Lam $ \v0 -> Lam $ \v1 ->
elimList @@. v0 @@. undef @@. (Lam $ \v2 -> Lam $ \v3 -> elimBool @@. (eq @@. v1 @@. zero) @@. (r @@ v3 @@ (sub @@. v1 @@. one)) @@. v2)) $ \nth ->
let
map_ = Lam $ \v0 -> foldr' @@ (Lam $ \v1 -> Lam $ \v2 -> cons @@. (v0 @@ v1) @@. v2) @@ nil
and'' = foldr' @@ and' @@ true
filter' = Lam $ \v0 -> foldr' @@ (Lam $ \v1 -> Lam $ \v2 -> elimBool @@. (v0 @@ v1) @@. v2 @@. (cons @@. v1 @@. v2)) @@ nil
in LetRec (\r -> cons @@. Int 2 @@. (cons @@. Int 3 @@. (filter' @@ (Lam $ \v0 -> and'' @@ (map_ @@. (Lam $ \v1 -> neq @@. zero @@. (mod' @@. v0 @@. v1)) @@ (takeWhile' @@ (geq @@ (iSqrt' @@. v0)) @@ r))) @@ (from @@ Int 5)))) $ \primes ->
nth @@ primes @@ Int n
main = getArgs >>= \case
[n] -> putStrLn $ pureEval $ nthPrime $ read n
[_, n] -> print $ primes !! read n
primes = 2:3: filter (\n -> and $ map (\p -> n `mod` p /= 0) (takeWhile (<= iSqrt n) primes)) [5..]