-
Notifications
You must be signed in to change notification settings - Fork 6.4k
/
Copy pathlogistic2.py
69 lines (48 loc) · 1.41 KB
/
logistic2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
# demonstrates how to calculate the cross-entropy error function
# in numpy.
#
# the notes for this class can be found at:
# https://deeplearningcourses.com/c/data-science-logistic-regression-in-python
# https://www.udemy.com/data-science-logistic-regression-in-python
from __future__ import print_function, division
from builtins import range
# Note: you may need to update your version of future
# sudo pip install -U future
import numpy as np
N = 100
D = 2
X = np.random.randn(N,D)
# center the first 50 points at (-2,-2)
X[:50,:] = X[:50,:] - 2*np.ones((50,D))
# center the last 50 points at (2, 2)
X[50:,:] = X[50:,:] + 2*np.ones((50,D))
# labels: first 50 are 0, last 50 are 1
T = np.array([0]*50 + [1]*50)
# add a column of ones
# ones = np.array([[1]*N]).T # old
ones = np.ones((N, 1))
Xb = np.concatenate((ones, X), axis=1)
# randomly initialize the weights
w = np.random.randn(D + 1)
# calculate the model output
z = Xb.dot(w)
def sigmoid(z):
return 1/(1 + np.exp(-z))
Y = sigmoid(z)
# calculate the cross-entropy error
def cross_entropy(T, Y):
E = 0
for i in range(len(T)):
if T[i] == 1:
E -= np.log(Y[i])
else:
E -= np.log(1 - Y[i])
return E
print(cross_entropy(T, Y))
# try it with our closed-form solution
w = np.array([0, 4, 4])
# calculate the model output
z = Xb.dot(w)
Y = sigmoid(z)
# calculate the cross-entropy error
print(cross_entropy(T, Y))