-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy path221.Maximal-Square.py
74 lines (62 loc) · 2.14 KB
/
221.Maximal-Square.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
# https://leetcode.com/problems/maximal-square/
#
# algorithms
# Medium (31.8%)
# Total Accepted: 111,987
# Total Submissions: 352,150
class Solution(object):
def maximalSquare(self, matrix):
"""
:type matrix: List[List[str]]
:rtype: int
"""
row = len(matrix)
if row == 0:
return 0
col = len(matrix[0])
res = 0
for i in xrange(row):
for j in xrange(col):
if matrix[i][j] == '1':
side = 1
is_ok = True
while True:
if i + side >= row or j + side >= col:
is_ok = False
break
for k in xrange(i, i + side + 1):
if matrix[k][j + side] == '0':
is_ok = False
break
for k in xrange(j, j + side + 1):
if matrix[i + side][k] == '0':
is_ok = False
break
if not is_ok:
break
side += 1
square = side * side
res = max(res, square)
return res
# 我的方法比较暴力,AC 之后发现其实这是一道 DP 的问题
# 记录下每个点最长的边,取最小值
class Solution1(object):
def maximalSquare(self, matrix):
"""
:type matrix: List[List[str]]
:rtype: int
"""
if not matrix or not matrix[0]:
return 0
m, n = len(matrix), len(matrix[0])
dp = [[0] * (n + 1) for _ in range(m + 1)]
curMax = 0
for i in xrange(1, m + 1):
for j in xrange(1, n + 1):
if matrix[i - 1][j - 1] == '1':
upperLeft = dp[i - 1][j - 1]
left = dp[i][j - 1]
up = dp[i - 1][j]
dp[i][j] = min(upperLeft, left, up) + 1
curMax = max(curMax, dp[i][j])
return curMax * curMax